Wave propagation characteristics of a cylindrical laminated composite nanoshell in thermal environment based on the nonlocal strain gradient theory

  • Hamed SafarpourEmail author
  • Seyed Ali Ghanizadeh
  • Mostafa Habibi
Regular Article


In this article, the wave propagation behavior of a size-dependent laminated composite cylindrical nanoshell in a thermal environment is presented. The small-scale effects are analyzed based on nonlocal strain gradient theory (NSGT). The governing equations of the cylindrical laminated composite nanoshell in a thermal environment were obtained using Hamilton’s principle and solved by the analytical method. The novelty of this study is considering the effects of the composite layers and NSGT in addition to considering the thermal environment of the cylindrical composite nanoshell. Finally, the investigation was performed on the influence of temperature difference, wave number, angular velocity and the different types of laminated composite on the phase velocity using the mentioned continuum mechanics theory. The results show that wave number, ply angle, shear correction factor and thermal environment play an important role on the phase velocity of the laminated composite nanostructure. Another significant result is that, in a specific temperature difference, there is an inverse relation between the number of layers in a laminate and the dynamic behavior of the nanostructure. The outcome of the present work can be used in a structural health monitoring and ultrasonic inspection techniques.


  1. 1.
    B. Wang, Z. Li, C. Wang, S. Signetti, B.V. Cunning, X. Wu et al., Adv. Mater. 30, 1707449 (2018)CrossRefGoogle Scholar
  2. 2.
    L. Zhao, Q. Guo, Z. Li, Z. Li, G. Fan, D.-B. Xiong et al., Int. J. Plastic. 105, 128 (2018)CrossRefGoogle Scholar
  3. 3.
    M. Janghorban, M.R. Nami, Mech. Adv. Mater. Struct. 24, 458 (2017)CrossRefGoogle Scholar
  4. 4.
    R. Talebitooti, A.C. Khameneh, Compos. Struct. 165, 44 (2017)CrossRefGoogle Scholar
  5. 5.
    M.R. Khosravani, M. Silani, K. Weinberg, Theor. Appl. Fract. Mech. 93, 302 (2018)CrossRefGoogle Scholar
  6. 6.
    K. Weinberg, M.R. Khosravani, Eur. Phys. J. ST 227, 167 (2018)CrossRefGoogle Scholar
  7. 7.
    V. Thierry, L. Brown, D. Chronopoulos, Composites Part B: Eng. 150, 144 (2018)CrossRefGoogle Scholar
  8. 8.
    A.C. Eringen, J. Appl. Phys. 54, 4703 (1983)CrossRefGoogle Scholar
  9. 9.
    H.-L. Lee, W.-J. Chang, J. Appl. Phys. 103, 024302 (2008)CrossRefGoogle Scholar
  10. 10.
    A.M. Zenkour, Compos. Struct. 185, 821 (2018)CrossRefGoogle Scholar
  11. 11.
    R.D. Mindlin, Int. J. Solids Struct. 1, 417 (1965)CrossRefGoogle Scholar
  12. 12.
    H. SafarPour, K. Mohammadi, M. Ghadiri, A. Rajabpour, Eur. Phys. J. Plus 132, 281 (2017)CrossRefGoogle Scholar
  13. 13.
    S. Xiao, W. Hou, Fullerenes, Nanotubes, Carbon Nonstruct. 14, 9 (2006)CrossRefGoogle Scholar
  14. 14.
    K. Mohammadi, M. Mahinzare, A. Rajabpour, M. Ghadiri, Eur. Phys. J. Plus 132, 115 (2017)CrossRefGoogle Scholar
  15. 15.
    U. Gul, M. Aydogdu, Physica E 93, 345 (2017)CrossRefGoogle Scholar
  16. 16.
    M. Arda, M. Aydogdu, Appl. Phys. A 122, 219 (2016)CrossRefGoogle Scholar
  17. 17.
    Z. Islam, P. Jia, C. Lim, Int. J. Appl. Mech. 6, 1450011 (2014)CrossRefGoogle Scholar
  18. 18.
    M. Aydogdu, Compos. Struct. 107, 578 (2014)CrossRefGoogle Scholar
  19. 19.
    E.C. Aifantis, Int. J. Eng. Sci. 30, 1279 (1992)CrossRefGoogle Scholar
  20. 20.
    C. Lim, G. Zhang, J. Reddy, J. Mech. Phys. Solids 78, 298 (2015)MathSciNetCrossRefGoogle Scholar
  21. 21.
    L. Lu, X. Guo, J. Zhao, Int. J. Eng. Sci. 116, 12 (2017)CrossRefGoogle Scholar
  22. 22.
    F. Ebrahimi, M.R. Barati, Eur. Phys. J. Plus 131, 279 (2016)CrossRefGoogle Scholar
  23. 23.
    H. Zeighampour, Y.T. Beni, I. Karimipour, Eur. Phys. J. Plus 132, 503 (2017)CrossRefGoogle Scholar
  24. 24.
    H.K. Bisheh, N. Wu, Compos. Struct. 191, 123 (2018)CrossRefGoogle Scholar
  25. 25.
    H. Zeighampour, Y.T. Beni, I. Karimipour, Microfluid. Nanofluid. 21, 85 (2017)CrossRefGoogle Scholar
  26. 26.
    Y. Zhen, L. Zhou, Mod. Phys. Lett. B 31, 1750069 (2017)CrossRefGoogle Scholar
  27. 27.
    P. Guo, W.-H. Wu, J. Zhao, Shock Vib. 2017, 8398673 (2017)Google Scholar
  28. 28.
    J.N. Reddy, Mechanics of Laminated Composite Plates and Shells: Theory and Analysis (CRC Press, 2004)Google Scholar
  29. 29.
    H. Zeighampour, Y.T. Beni, M.B. Dehkordi, Thin-Walled Struct. 122, 378 (2018)CrossRefGoogle Scholar
  30. 30.
    H. Zeighampour, Y.T. Beni, Compos. Struct. 179, 124 (2017)CrossRefGoogle Scholar
  31. 31.
    S. Tsai, Introduction to Composite Materials (Routledge, 2018)Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Engineering, Department of MechanicsImam Khomeini International UniversityQazvinIran
  2. 2.Department of Civil Engineering, Marand BranchIslamic Azad UniversityMarandIran
  3. 3.Center of Excellence in Design, Robotics and Automation, School of Mechanical EngineeringSharif University of TechnologyTehranIran

Personalised recommendations