Guidelines for the evaluation of magnetotransport parameters from measurements on thin strip-shaped samples of bulk metallic ferromagnets with finite residual resistivity

  • I. BakonyiEmail author
Regular Article


In the present paper, the formulae are summarized for the evaluation of magnetoresistance data from the measured field dependence of the resistivity obtained on thin strip-shaped samples of ferromagnetic metals and alloys with a finite residual resistivity for various relative orientations of the magnetic field and the measuring current. This sample shape simplifies the problem in that the specimen shape can be approximated with a general ellipsoid for which the demagnetizing fields can be estimated with sufficient accuracy from tabulated data. First, the various experimental configurations are defined for the magnetotransport measurements. Then, the formulae for describing the field-dependence of the resistivity in metallic ferromagnets with finite residual resistivity are discussed, by treating separately the case of low and high temperatures, low and high being defined with respect to the Curie temperature of the ferromagnet under study. The extraction of some magnetotransport parameters (anisotropic magnetoresistance and Hall effect) often requires an extrapolation of the measured data to zero magnetic field or zero magnetic induction and this will also be discussed. Finally, a summary of the relations between the experimentally measured magnetotransport parameters and those derived from theoretical calculations will be given.


  1. 1.
    E. Fawcett, Adv. Phys. 13, 139 (1964)ADSCrossRefGoogle Scholar
  2. 2.
    C.M. Hurd, Adv. Phys. 23, 315 (1974)ADSCrossRefGoogle Scholar
  3. 3.
    R.M. Bozorth, Ferromagnetism (Van Nostrand, New York, 1951)Google Scholar
  4. 4.
    T.R. McGuire, R.I. Potter, IEEE Trans. Magn. 11, 1018 (1975)ADSCrossRefGoogle Scholar
  5. 5.
    I.A. Campbell, A. Fert, Transport Properties of Ferromagnets, in Ferromagnetic Materials, edited by E.P. Wohlfarth, Vol. 3 (North-Holland, Amsterdam, 1982) Chapt. 9Google Scholar
  6. 6.
    F.C. Schwerer, J. Silcox, J. Appl. Phys. 39, 2047 (1968)ADSCrossRefGoogle Scholar
  7. 7.
    F.C. Schwerer, J. Silcox, Phys. Rev. B 1, 2391 (1970)ADSCrossRefGoogle Scholar
  8. 8.
    I.A. Campbell, A. Fert, A.R. Pomeroy, Philos. Mag. 15, 977 (1967)ADSCrossRefGoogle Scholar
  9. 9.
    R.C. O’Handley, Modern Magnetic Materials. Principles and Applications (Wiley-Interscience, New York, 2000)Google Scholar
  10. 10.
    N.F. Mott, Proc. R. Soc. (London) A 153, 699 (1936)ADSCrossRefGoogle Scholar
  11. 11.
    G. Binasch, P. Grünberg, F. Saurenbach, W. Zinn, Phys. Rev. B 39, 4828 (1989)ADSCrossRefGoogle Scholar
  12. 12.
    M.N. Baibich, J.M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, J. Chazelas, Phys. Rev. Lett. 61, 2472 (1988)ADSCrossRefGoogle Scholar
  13. 13.
    J.M. Daughton, J. Magn. & Magn. Mater. 192, 334 (1999)ADSCrossRefGoogle Scholar
  14. 14.
    H. Ebert, A. Vernes, J. Banhart, Phys. Rev. B 54, 8479 (1996)ADSCrossRefGoogle Scholar
  15. 15.
    J. Banhart, H. Ebert, A. Vernes, Phys. Rev. B 56, 10165 (1997)ADSCrossRefGoogle Scholar
  16. 16.
    S. Khmelevskyi, K. Palotás, L. Szunyogh, P. Weinberger, Phys. Rev. B 68, 012402 (2003)ADSCrossRefGoogle Scholar
  17. 17.
    S. Lowitzer, D. Ködderitzsch, H. Ebert, J.B. Staunton, Phys. Rev. B 79, 115109 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    J. Kudrnovsky, V. Drchal, S. Khmelevskyi, I. Turek, Phys. Rev. B 84, 214436 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    J. Kudrnovsky, V. Drchal, I. Turek, S. Khmelevskyi, J.K. Glasbrenner, K.D. Belashchenko, Phys. Rev. B 86, 144423 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    Y. Liu, Z. Yuan, R.J.H. Wesselink, A.A. Starikov, M. van Schilfgaarde, P.J. Kelly, Phys. Rev. B 91, 220405 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    A.A. Starikov, Y. Liu, Z. Yuan, P.J. Kelly, Phys. Rev. B 97, 214415 (2018)ADSCrossRefGoogle Scholar
  22. 22.
    B.G. Tóth, L. Péter, Á. Révész, J. Pádár, I. Bakonyi, Eur. Phys. J. B 75, 167 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    O. Jaoul, I.A. Campbell, A. Fert, J. Magn. & Magn. Mater. 5, 23 (1977)ADSCrossRefGoogle Scholar
  24. 24.
    J.M. Ziman, Electrons and Phonons (Clarendon Press, Oxford, 1960) Chapt. VIGoogle Scholar
  25. 25.
    I. Bakonyi, E. Tóth-Kádár, J. Tóth, Á. Cziráki, B. Fogarassy, in Nanophase Materials, NATO ASI Series E, edited by G.C. Hadjipanayis, R.W. Siegel, Vol. 260 (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1994) p. 423Google Scholar
  26. 26.
    M.J. Aus, B. Szpunar, U. Erb, A.M. El-Sherik, G. Palumbo, K.T. Aust, J. Appl. Phys. 75, 3632 (1994)ADSCrossRefGoogle Scholar
  27. 27.
    J.L. McCrea, K.T. Aust, G. Palumbo, U. Erb, MRS Symp. Proc. 581, 461 (2000)CrossRefGoogle Scholar
  28. 28.
    J.L. McCrea, PhD Thesis, University of Toronto, Toronto, Canada (2001)Google Scholar
  29. 29.
    P.V.P. Madduri, S.N. Kaul, Phys. Rev. B 95, 184402 (2017)ADSCrossRefGoogle Scholar
  30. 30.
    B. Raquet, M. Viret, J.M. Broto, E. Sondergard, O. Cespedes, R. Mamy, J. Appl. Phys. 91, 8129 (2002)ADSCrossRefGoogle Scholar
  31. 31.
    B. Raquet, M. Viret, E. Sondergard, O. Cespedes, R. Mamy, Phys. Rev. B 66, 024433 (2002)ADSCrossRefGoogle Scholar
  32. 32.
    J.A. Osborn, Phys. Rev. 67, 351 (1945)ADSCrossRefGoogle Scholar
  33. 33.
    J. Ivkov, H.H. Liebermann, in Rapidly Quenched Metals, edited by S. Steeb, H. Warlimont (Elsevier Science Publishers B.V., Amsterdam, 1985) p. 1075Google Scholar
  34. 34.
    See fig. A-1 “Common Hall bar geometries”, in Lake Shore 7500/9500 Series Hall System User’s Manual, Appendix A: Hall effects measurements, available at: 589e2361217e20a1470d36fd&assetKey=AS:460313729474561@1486758753270
  35. 35.
    E.M. Pugh, N. Rostoker, Rev. Mod. Phys. 25, 151 (1953)ADSCrossRefGoogle Scholar
  36. 36.
    C. Kooi, Phys. Rev. 95, 843 (1954)ADSCrossRefGoogle Scholar
  37. 37.
    J.P. Jan, Helv. Phys. Acta 25, 677 (1952)Google Scholar
  38. 38.
    J.P. Jan, J.M. Gijsman, Physica 18, 339 (1952)ADSCrossRefGoogle Scholar
  39. 39.
    J. Smit, Physica 21, 877 (1955)ADSCrossRefGoogle Scholar
  40. 40.
    Y. Tian, L. Ye, X.F. Jin, Phys. Rev. Lett. 103, 087206 (2009)ADSCrossRefGoogle Scholar
  41. 41.
    D.Z. Hou, Y.F. Li, D.H. Wei, D. Tian, L. Wu, X.F. Jin, J. Phys.: Condens. Matter 24, 482001 (2012)Google Scholar
  42. 42.
    R. Karplus, J.M. Luttinger, Phys. Rev. 95, 1154 (1954)ADSCrossRefGoogle Scholar
  43. 43.
    N. Nagaosa, J. Sinova, S. Onoda, A.H. MacDonald, N.P. Ong, Rev. Mod. Phys. 82, 1539 (2010)ADSCrossRefGoogle Scholar
  44. 44.
    N.A. Sinitsyn, J. Phys.: Condens. Matter 20, 023201 (2008)ADSGoogle Scholar
  45. 45.
    W. Gil, D. Görlitz, M. Horisberger, J. Kötzler, Phys. Rev. B 72, 134401 (2005)ADSCrossRefGoogle Scholar
  46. 46.
    B. Leven, G. Dumpich, Phys. Rev. B 71, 064411 (2005)ADSCrossRefGoogle Scholar
  47. 47.
    U. Rüdiger, J. Yu, L. Thomas, S.S.P. Parkin, A.D. Kent, Phys. Rev. B 59, 11914 (1999)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Wigner Research Centre for PhysicsHungarian Academy of SciencesBudapestHungary

Personalised recommendations