A quantum bound on the thermodynamic description of gravity

  • Shahar HodEmail author
Regular Article


The seminal works of Bekenstein and Hawking have revealed that black holes have a well-defined thermodynamic description. In particular, it is often stated in the physics literature that black holes, like mundane physical systems, obey the first law of thermodynamics: \( \Delta S=\Delta E/T_{\rm BH}\), where \( T_{\rm BH}\) is the Bekenstein-Hawking temperature of the black hole. In the present paper we test the regime of validity of the thermodynamic description of gravity. In particular, we provide compelling evidence that, due to quantum effects, the first law of thermodynamics breaks down in the low-temperature regime \(T_{\rm BH} \times r_{\rm H} \lesssim (\hbar/r_{\rm H})^{2}\) of near-extremal black holes (here \( r_{\rm H}\) is the radius of the black-hole horizon).


  1. 1.
    J.D. Bekenstein, Phys. Rev. D 23, 287 (1981)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    J.D. Bekenstein, Phys. Rev. D 7, 2333 (1973)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    S.W. Hawking, Commun. Math. Phys. 43, 199 (1975)ADSCrossRefGoogle Scholar
  4. 4.
    L.D. Landau, E.M. Lifshitz, Statistical Physics (Addison-Wesley, Reading, MA, 1969)Google Scholar
  5. 5.
    B. Carter, in Black Holes, edited by C.M. DeWitt, B.S. DeWitt (Gordon and Breach, New York, 1973)Google Scholar
  6. 6.
    S. Hod, Phys. Rev. Lett. 100, 121101 (2008) arXiv:0805.3873ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    D. Christodoulou, R. Ruffini, Phys. Rev. D 4, 3552 (1971)ADSCrossRefGoogle Scholar
  8. 8.
    M. Born, Atomic Physics (Blackie, London, 1969)Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.The Ruppin Academic CenterEmeq HeferIsrael
  2. 2.The Hadassah Academic CollegeJerusalemIsrael

Personalised recommendations