Advertisement

Characteristic analysis of the fractional-order hyperchaotic memristive circuit based on the Wien bridge oscillator

  • Xiaolin Ye
  • Xingyuan WangEmail author
  • Jun Mou
  • Xiaopeng Yan
  • Yongjin Xian
Regular Article
  • 17 Downloads

Abstract.

In this paper, a new hyperchaotic memristive circuit based on the Wien bridge oscillator is built. The numerical solution of the new fractional-order memristive system is calculated by using the Adomian decomposition method. By using the spectral entropy (SE) complexity algorithm and the \( C_0\) complexity algorithm, the dynamic characteristics of the fractional-order system are analyzed. Especially, the fractional-order coexisting attractors are found and the coexisting bifurcation diagrams with different order are presented. With varying the order q , the phenomenon of coexisting evolution is observed. Finally, the practical circuit is realized. The results of the theoretical analysis and the numerical simulation show that the fractional-order Wien bridge hyperchaotic memristive circuit system has very complex dynamical characteristics. It provides a theoretical guidance for the chaotic related field.

References

  1. 1.
    L.O. Chua, IEEE Trans. On. Circuit. Theor. 18, 507 (1971)CrossRefGoogle Scholar
  2. 2.
    J.M. Tour, T. He, Nature. 453, 42 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    L.O. Chua, Appl. Phys. A 102, 765 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    G. Si, L. Diao, J. Zhu, Nonlinear Dyn. 87, 1 (2016)Google Scholar
  5. 5.
    J.Y. Ruan, K.H. Sun, J. Mou, Act. Phys. Sin. 19, 19052 (2016)Google Scholar
  6. 6.
    H. Bao, B.C. Bao, Y. Lin, J. Wang, H.G. Wu, Acta Phys. Sin. 65, 180501 (2016)Google Scholar
  7. 7.
    C. Li, J.C. Sprott, H. Xing, Nonlinear Dyn. 87, 1355 (2017)Google Scholar
  8. 8.
    C. Li, J.C. Sprott, H. Xing, Phys. Lett. A 380, 1175 (2016)ADSGoogle Scholar
  9. 9.
    C. Li, W. Hu, J.C. Sprott, X. Wang, Eur. Phys. J. ST 224, 1493 (2015)CrossRefGoogle Scholar
  10. 10.
    C. Li, J.C. Sprott, W. Thio, Phys. Lett. A 379, 890 (2015)Google Scholar
  11. 11.
    C. Li, J.C. Sprott, Int. J. Bifurc. Chaos 23, 1350199 (2013)CrossRefGoogle Scholar
  12. 12.
    B.C. Bao, J.P. Xu, Z. Liu, S.H. Pan, Sci. Chin. Tech. Sci. 54, 2180 (2011)CrossRefGoogle Scholar
  13. 13.
    I. Vourkas, G.C. Sirakoulis, Nano IEEE Trans. 11, 1151 (2012)CrossRefGoogle Scholar
  14. 14.
    X. Ye, J. Mou, C. Luo, Z. Wang, Nonlinear Dyn. 92, 923 (2018)CrossRefGoogle Scholar
  15. 15.
    S. He, K. Sun, X. Mei, B. Yan, S. Yu, Eur. Phys. J. Plus 132, 36 (2017)ADSCrossRefGoogle Scholar
  16. 16.
    K. Parand, P. Mazaheri, H. Yousefi, M. Delkhosh, Eur. Phys. J. Plus 132, 77 (2017)CrossRefGoogle Scholar
  17. 17.
    H.H. Wang, K.H. Sun, S.B. He, Int. J. Bifurc. Chaos 25, 1550085 (2015)CrossRefGoogle Scholar
  18. 18.
    M. Li, D. Li, J. Wang, C. Zhao, Isa Trans. 62, 109 (2016)CrossRefGoogle Scholar
  19. 19.
    B.S.T. Alkahtani, A. Atangana, Chaos, Solitons Fractals 89, 539 (2016)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    G.M. Mahmoud, M.E. Ahmed, T.M. Abed-Elhameed, Eur. Phys. J. Plus 131, 1 (2016)CrossRefGoogle Scholar
  21. 21.
    L. Chen, C. Liu, R. Wu, Y. He, Y. Chai, Neur. Comput. Appl. 27, 549 (2016)CrossRefGoogle Scholar
  22. 22.
    L. Wang, Q. Song, Y. Liu, Z. Zhao, F.E. Alsaadi, Neurocomputing 245, 86 (2017)CrossRefGoogle Scholar
  23. 23.
    H. Wu, X. Zhang, S. Xue, L. Wang, Y. Wang, Neurocomputing 193, 148 (2016)CrossRefGoogle Scholar
  24. 24.
    K. Rajagopal, A. Karthikeyan, A.K. Srinivasan, Nonlinear Dyn. 87, 2281 (2017)CrossRefGoogle Scholar
  25. 25.
    I. Pan, S. Das, Isa Trans. 62, 19 (2016)CrossRefGoogle Scholar
  26. 26.
    A.E. Matouk, A.A. Elsadany, Nonlinear Dyn. 85, 1597 (2016)CrossRefGoogle Scholar
  27. 27.
    G. Adomian, J. Math. Anal. Appl. 113, 202 (1986)MathSciNetCrossRefGoogle Scholar
  28. 28.
    S. He, K. Sun, H. Wang, Entropy 17, 8308 (2015)ADSGoogle Scholar
  29. 29.
    Y. Wang, K. Sun, S. He, H. Wang, Eur. Phys. J. ST 223, 1598 (2014)CrossRefGoogle Scholar
  30. 30.
    L. Zhang, K. Sun, S. He, H. Wang, Y. Xu, Eur. Phys. J. Plus 132, 31 (2017)ADSCrossRefGoogle Scholar
  31. 31.
    J. Ruan, K. Sun, J. Mou, S. He, L. Zhang, Eur. Phys. J. Plus 133, 3 (2018)CrossRefGoogle Scholar
  32. 32.
    S. He, K. Sun, H. Wang, X. Mei, Y. Sun, Nonlinear Dyn. 92, 90 (2018)Google Scholar
  33. 33.
    Z. Wang, M. Yin, T. Zhang, Y. Cai, Y. Wang, Y. Yang, R. Huang, Nanoscale 8, 14015 (2016)ADSCrossRefGoogle Scholar
  34. 34.
    J. Chen, Z. Zeng, P. Jiang, Neural Netw. 51, 1 (2014)CrossRefGoogle Scholar
  35. 35.
    L. Chen, Y. Chai, R. Wu, T. Ma, H. Zhai, Neurocomputing 111, 192 (2013)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xiaolin Ye
    • 1
  • Xingyuan Wang
    • 1
    Email author
  • Jun Mou
    • 2
  • Xiaopeng Yan
    • 1
  • Yongjin Xian
    • 1
  1. 1.School of Information Science and TechnologyDalian Maritime UniversityDalianChina
  2. 2.School of Information Science and EngineeringDalian Polytechnic UniversityDalianChina

Personalised recommendations