Skip to main content
Log in

On wave dispersion characteristics of magneto-electro-elastic nanotubes considering the shell model based on the nonlocal strain gradient elasticity theory

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

In the present study, wave propagation analysis of magneto-electro-elastic (MEE) nanotubes considering the shell model is explored in the framework of the nonlocal strain gradient elasticity theory. To take the small-scale effects into account, the nonlocal elasticity theory of Eringen is applied. Nonlocal governing equations of MEE nanotube have been derived utilizing Hamilton’s principle. The outcomes of this paper have been validated by comparing them with previous investigations. An analytical solution of governing equations is used to obtain phase velocities and wave frequencies. The influence of different parameters, such as different mode, nonlocal parameter, length parameter, geometry, magnetic field and electric field on wave propagation characteristics of MEE nanotube are reported in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Wang, J.M. Hu, Y.H. Lin, C.W. Nan, NPG Asia Mater. 2, 61 (2010)

    Article  Google Scholar 

  2. R. Chowdhury et al., Comput. Mater. Sci. 48, 730 (2010)

    Article  Google Scholar 

  3. R. Chowdhury, S. Adhikari, F. Scarpa, Appl. Phys. A 102, 301 (2011)

    Article  ADS  Google Scholar 

  4. A.C. Eringen, Int. J. Eng. Sci. 10, 425 (1972)

    Article  Google Scholar 

  5. A. Eringen Cemal, J. Appl. Phys. 54, 4703 (1983)

    Article  ADS  Google Scholar 

  6. F.A.C.M. Yang, D.C.C. Lam, P. Tong, Int. J. Solids Struct. 39, 2731 (2002)

    Article  Google Scholar 

  7. J.N. Reddy, Int. J. Eng. Sci. 45, 288 (2007)

    Article  Google Scholar 

  8. A. Tounsi, S. Benguediab, B. Adda, A. Semmah, M. Zidour, Adv. Nano Res. 1, 1 (2013)

    Article  Google Scholar 

  9. L. Li, Y. Hu, Int. J. Mech. Sci. 120, 159 (2017)

    Article  Google Scholar 

  10. F. Ebrahimi, E. Salari, Mech. Adv. Mater. Struct. 23, 1379 (2015)

    Article  Google Scholar 

  11. F. Ebrahimi, E. Salari, Acta Astron. 113, 29 (2015)

    Article  Google Scholar 

  12. L. Li, Y. Hu, L. Ling, Compos. Struct. (2015) https://doi.org/10.1016/j.compstruct.2015.08.014

  13. F. Ebrahimi, P. Nasirzadeh, J. Theor. Appl. Mech. 53, 1041 (2015)

    Article  Google Scholar 

  14. F. Ebrahimi, S.H.S. Hosseini, J. Therm. Stresses 39, 606 (2016)

    Article  Google Scholar 

  15. Fahimeh Mehralian, Yaghoub Tadi Beni, Mehran Karimi Zeverdejani, Physica B 521, 102 (2017)

    Article  ADS  Google Scholar 

  16. F. Ebrahimi, M.R. Barati, Appl. Phys. A 122, 880 (2016)

    Article  ADS  Google Scholar 

  17. L. Li, Y. Hu, Comput. Mater. Sci. 112, 282 (2016)

    Article  Google Scholar 

  18. S. Narendar, S. Gopalakrishnan, Comput. Mater. Sci. 47, 526 (2009)

    Article  Google Scholar 

  19. S. Narendar, S. Gopalakrishnan, Composites B 43, 1275 (2011)

    Article  Google Scholar 

  20. S. Narendar, S. Gopalakrishnan, Appl. Math. Model. 36, 4529 (2012)

    Article  MathSciNet  Google Scholar 

  21. A.G. Arani, R. Kolahchi, S.A. Mortazavi, Int. J. Mech. Mater. Des. 10, 179 (2014)

    Article  Google Scholar 

  22. L. Li, Y. Hu, L. Ling, Physica E 75, 118 (2016)

    Article  ADS  Google Scholar 

  23. F. Ebrahimi, M.R. Barati, A. Dabbagh, Appl. Phys. A 122, 949 (2016)

    Article  ADS  Google Scholar 

  24. F. Ebrahimi, E. Salari, Compos. Struct. 128, 363 (2015)

    Article  Google Scholar 

  25. F. Ebrahimi, M.R. Barati, Eur. Phys. J. Plus 131, 279 (2016)

    Article  Google Scholar 

  26. F. Ebrahimi, M.R. Barati, Mech. Adv. Mater. Struct. 24, 924 (2017)

    Article  Google Scholar 

  27. F. Ebrahimi, M.R. Barati, Int. J. Smart Nano Mater. 7, 69 (2016)

    Article  ADS  Google Scholar 

  28. F. Ebrahimi, E. Salari, Compos. Part B Eng. 78, 272 (2015)

    Article  Google Scholar 

  29. A. Baninajjaryan, Y. Tadi Beni, J. Theor. Biol. 382, 111 (2015)

    Article  Google Scholar 

  30. H. Zeighampour, Y. Tadi Beni, F. Mehralian, Acta Mech. 226, 2607 (2015)

    Article  MathSciNet  Google Scholar 

  31. F. Mehralian, Y. Tadi Beni, R. Ansari, Int. J. Mech. Sci. 119, 155 (2016)

    Article  Google Scholar 

  32. K.M. Liew, Q. Wang, Int. J. Eng. Sci. 45, 227 (2007)

    Article  Google Scholar 

  33. Y. Hu, K.M. Liew, Q. Wang, X.Q. He, B.I. Yakobson, J. Mech. Phys. Solids 56, 3475 (2008)

    Article  ADS  Google Scholar 

  34. J. Yu, Q. Ma, S. Su, Ultrasonics 48, 664 (2008)

    Article  Google Scholar 

  35. M. Abdollahian, A. Ghorbanpour Arani, A.A. Mosallaie Barzoki, R. Kolahchi, A. Loghman, Physica B 418, 1 (2013)

    Article  ADS  Google Scholar 

  36. A.G. Arani et al., Compos. Part B 43, 195 (2012)

    Article  Google Scholar 

  37. A.G. Arani et al., Compos. Part B 51, 291 (2013)

    Article  Google Scholar 

  38. L.L. Ke, Y.S. Wang, J.N. Reddy, Compos. Struct. 116, 626 (2014)

    Article  Google Scholar 

  39. R. Ansari et al., Microfluid. Nanofluid. 19, 509 (2015)

    Article  Google Scholar 

  40. S. Sahmani, M.M. Aghdam, M. Bahrami, Compos. Struct. 131, 414 (2015)

    Article  Google Scholar 

  41. H. Zeighampour, Y.T. Beni, I. Karimipour, Microfluid. Nanofluid. 21, 85 (2017)

    Article  Google Scholar 

  42. R.K. Bhangale, N. Ganesan, J. Sound Vib. 228, 412 (2005)

    Article  ADS  Google Scholar 

  43. R.A. Toupin, Arch. Ration. Mech. Anal. 11, 385 (1962)

    Article  MathSciNet  Google Scholar 

  44. R.D. Mindlin, Arch. Ration. Mech. Anal. 16, 51 (1964)

    Article  MathSciNet  Google Scholar 

  45. R.D. Mindlin, Int. J. Solids Struct. 1, 417 (1965)

    Article  Google Scholar 

  46. W. Koiter, A consistent first approximation in the general theory of thin elastic shells: Theory of thin elastic shells (1960) pp. 12--33

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Ebrahimi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dehghan, M., Ebrahimi, F. On wave dispersion characteristics of magneto-electro-elastic nanotubes considering the shell model based on the nonlocal strain gradient elasticity theory. Eur. Phys. J. Plus 133, 466 (2018). https://doi.org/10.1140/epjp/i2018-12304-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2018-12304-7

Navigation