Stochastic vs. sensitivity-based integral parameter and nuclear data adjustments

Abstract.

Developments in data assimilation theory allow to adjust integral parameters and cross sections with stochastic sampling. This work investigates how two stochastic methods, MOCABA and BMC, perform relative to a sensitivity-based methodology called GLLS. Stochastic data assimilation can treat integral parameters that behave non-linearly with respect to nuclear data perturbations, which would be an advantage over GLLS. Additionally, BMC is compatible with integral parameters and nuclear data that have non-Gaussian distributions. In this work, MOCABA and BMC are compared to GLLS for a simple test case: JEZEBEL-Pu239 simulated with Serpent2. The three methods show good agreement between the mean values and uncertainties of their posterior calculated values and nuclear data. The observed discrepancies are not statistically significant with a sample size of 10000. BMC posterior calculated values and nuclear data have larger uncertainties than MOCABA’s at equivalent sample sizes.

This is a preview of subscription content, log in to check access.

References

  1. 1

    M. Salvatores et al., Nucl. Data Sheets 118, 38 (2014)

    ADS  Article  Google Scholar 

  2. 2

    A. Hoefer, O. Buss, J.C. Neuber, How confident can we be in confidence intervals for the computational bias obtained with the generalized linear least squares methodology? - A toy model analysis, in Proceedings of the International Conference on Nuclear Criticality (2011)

  3. 3

    D. Siefman, Case Study of Data Assimilation Methods with the LWR-Proteus Phase II Experimental Campaign, in Proceedings of the International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering, M&C 2017, Jeju, South Korea (2017)

  4. 4

    T. Watanabe et al., J. Nucl. Sci. Technol. 51, 590 (2014)

    Article  Google Scholar 

  5. 5

    O. Buss et al., Ann. Nucl. Energy 77, 514 (2015)

    Article  Google Scholar 

  6. 6

    E. Castro et al., Ann. Nucl. Energy 95, 148 (2016)

    Article  Google Scholar 

  7. 7

    D. Rochman et al., Eur. Phys. J. A 52, 182 (2015)

    ADS  Article  Google Scholar 

  8. 8

    E. Alhassan et al., Prog. Nucl. Energy 88, 43 (2016)

    Article  Google Scholar 

  9. 9

    H. Mitani, H. Kuroi, J. Nucl. Sci. Technol. 9, 383 (1972)

    Article  Google Scholar 

  10. 10

    A. Pazy et al., Nucl. Sci. Eng. 55, 280 (1974)

    Article  Google Scholar 

  11. 11

    J. Dragt et al., Nucl. Sci. Eng. 62, 119 (1977)

    Article  Google Scholar 

  12. 12

    D. Rochman et al., Ann. Nucl. Energy 112, 236 (2018)

    Article  Google Scholar 

  13. 13

    G. Palmiotti et al., Nucl. Sci. Eng. 178, 295 (2014)

    Article  Google Scholar 

  14. 14

    A. Koning et al., Ann. Nucl. Energy 35, 2024 (2008)

    Article  Google Scholar 

  15. 15

    D. Rochman et al., EPJ Web of Conferences 8, 4003 (2010)

    Article  Google Scholar 

  16. 16

    O. Leray et al., Ann. Nucl. Energy 110, 547 (2017)

    Article  Google Scholar 

  17. 17

    J. Leppänen et al., Ann. Nucl. Energy 82, 142 (2015)

    Article  Google Scholar 

  18. 18

    M. Aufiero et al., Ann. Nucl. Energy 85, 245 (2015)

    Article  Google Scholar 

  19. 19

    T. Zhu et al., Ann. Nucl. Energy 75, 713 (2015)

    Article  Google Scholar 

  20. 20

    International handbook of evaluated reactor physics benchmark experiments NEA/NSC/DOC(2006)1 (2017)

  21. 21

    D. Siefman, Convergence Analysis and Criterion for Parameters Estimated with Sensitivities from Monte Carlo Neutron Transport Codes, in Proceedings of the International Conference on Reactor Physics paving the way towards more efficient systems, PHYSOR2018, Cancun, Mexico (2018)

  22. 22

    R. MacFarlane, A. Kahler, Nucl. Data Sheets 111, 2739 (2010)

    ADS  Article  Google Scholar 

  23. 23

    B. Efron, R. Tibshirani, Stat. Sci. 1, 54 (1986)

    Article  Google Scholar 

  24. 24

    E. Lehmann, G. Casella, Theory of Point Estimation, Vol. 2 (Springer-Verlag New York, 1998)

  25. 25

    A. Doucet, A. Johansen, in Handbook of Nonlinear Filtering (Oxford University Press, 2011)

  26. 26

    S. Surace, A. Kutschireiter, J. Pfister, arXiv:1703.07879 (2017)

  27. 27

    G. Palmiotti, M. Salvatores, G. Aliberti, Nucl. Data Sheets 123, 41 (2015)

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to D. Siefman.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Siefman, D., Hursin, M., Rochman, D. et al. Stochastic vs. sensitivity-based integral parameter and nuclear data adjustments. Eur. Phys. J. Plus 133, 429 (2018). https://doi.org/10.1140/epjp/i2018-12303-8

Download citation