Study of the associated production of the Higgs boson with a top quark pair in a boosted regime in the ATLAS experiment

Abstract.

The measurements of the \(pp\rightarrow t\bar{t} H\) signal strength (\(\mu = \sigma_{obs}/\sigma_{t\bar{t} H_{SM}}\)) and its upper limit at a center-of-mass energy of pp collision of 13TeV are presented in this paper. The pp data collected with the ATLAS detector in 2015 and 2016, corresponding to an integrated luminosity of 36.5 fb-1, have been subjected to a detailed analysis. The \( t\bar{t} H\) signal strength and its upper limit have been measured searching for the decays \(H\rightarrow b \bar{b}\) and \( t\bar{t} \rightarrow l \nu b q \bar{q}' \bar{b}\). Two different analysis approaches have been used in order to analyse the same data in two different ways. In the first (namely “resolved”), the procedure uses standard identification and reconstruction algorithms, meaning that the individual partons from the initial hard process are reconstructed as separate objects. In the second (namely “combined”), the events are separated in two exclusive regimes, including events containing the hadronically decaying top quark (\(t \rightarrow q q' b\)) with a low transverse momentum (\(p_{\rm T} < 250\) GeV) and the boosted ones with the opposite requirement, where the partially overlapped jets coming from high pT tops are suitably identified, reconstructed and tagged. The boosted sample is sensitive to a significantly different kinematic region and provides additional information. The measured signal strength is \( 1.4 \pm 0.5\) and \( 1.2 \pm 0.5\), respectively, for the resolved and the combined analysis. A signal strength larger than 2.3 and 2.0 can be excluded at the 95% confidence level respectively for the resolved and the combined analysis. Both results are compatible with the prediction of the Standard Model (\(\mu = 1\)). Previous results in the search for the \(t\bar{t} H\) process were reported by the ATLAS Collaboration and a boosted reconstruction in the channel was previously done by the CMS Collaboration.

This is a preview of subscription content, log in to check access.

References

  1. 1

    Large Hadron Collider, https://doi.org/home.cern/topics/large-hadron-collider

  2. 2

    ATLAS Collaboration, Phys. Lett. B 716, 1 (2012)

    ADS  Article  Google Scholar 

  3. 3

    CMS Collaboration, Phys. Lett. B 716, 30 (2012)

    ADS  Article  Google Scholar 

  4. 4

    Particle Data Group (C. Patrignani et al.), Chin. Phys. C 40, 100001 (2016) and 2017 update

    ADS  Article  Google Scholar 

  5. 5

    ATLAS Collaboration, Eur. Phys. J. C 75, 349 (2015)

    ADS  Article  Google Scholar 

  6. 6

    ATLAS Collaboration, Performance of top-quark and W-boson tagging with ATLAS in Run 2 of the LHC, arXiv:1808.07858v1

  7. 7

    Luminosity Public Results Run-2, https://doi.org/twiki.cern.ch/twiki/bin/view/AtlasPublic/LuminosityPublicResultsRun2

  8. 8

    ATLAS Collaboration, JINST 3, S08003 (2008)

    Google Scholar 

  9. 9

    S. Agostinelli et al., Nucl. Instrum. Methods A 506, 250 (2003)

    ADS  Article  Google Scholar 

  10. 10

    W. Lukas, J. Phys.: Conf. Ser. 396, 022031 (2012)

    Google Scholar 

  11. 11

    S. Frixione, F. Stoeckli, P.Torrielli, B.R. Webber, C.D. White, The MC@NLO 4.0 Event Generator, arXiv:1010.0819 [hep-ph] (2010)

  12. 12

    T. Sjöstrand, S. Mrenna, P. Skands, A brief introduction to PYTHIA 8.1, arXiv:0710.3820v1 [hep-ph] (2008)

  13. 13

    R.D. Ball, V. Bertone, S. Carrazza, C.S. Deans, L. Del Debbio, S. Forte, A. Guffanti, N.P. Hartland, J.I. Latorre, J. Rojo, M. Ubiali, JHEP 04, 040 (2015)

    ADS  Article  Google Scholar 

  14. 14

    S. Alioli et al., JHEP 06, 043 (2010)

    ADS  Article  Google Scholar 

  15. 15

    S. Frixione, P. Nason, C. Oleari, JHEP 11, 070 (2007)

    ADS  Article  Google Scholar 

  16. 16

    D.J. Lange, Nucl. Instrum. Methods A 462, 152 (2001)

    ADS  Article  Google Scholar 

  17. 17

    T. Gleisberg et al., JHEP 02, 007 (2009)

    ADS  Article  Google Scholar 

  18. 18

    H.-L. Lai et al., Phys. Rev. D 82, 074024 (2010)

    ADS  Article  Google Scholar 

  19. 19

    J. Alwall et al., JHEP 06, 128 (2011)

    ADS  Article  Google Scholar 

  20. 20

    D0 Collaboration, Phys. Rev. D 76, 092007 (2007)

    Article  Google Scholar 

  21. 21

    ALTAS Collaboration, Estimation of non-prompt and fake lepton backgrounds in final states with top quarks produced in proton-proton collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector, ATLAS-CONF-2014-058

  22. 22

    ATLAS Collaboration, Search for the Standard Model Higgs boson produced in association with top quarks and decaying into $b\bar{b}$ in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector, ATLAS-CONF-2016-080

  23. 23

    ATLAS Collaboration, Eur. Phys. J. 76, 6 (2016)

    ADS  Article  Google Scholar 

  24. 24

    T. Gleisberg et al., JHEP 02, 007 (2009)

    ADS  Article  Google Scholar 

  25. 25

    F. Cascioli, P. Maierhofer, S. Pozzorini, Phys. Rev. Lett. 108, 111601 (2012)

    ADS  Article  Google Scholar 

  26. 26

    J. Adelman, Search for the Standard Model Higgs boson produced in association with top quarks in pp collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector at the LHC, ATL-COM-PHYS-2014-1471 (2014)

  27. 27

    F. Cascioli et al., Phys. Lett. B 734, 210 (2014)

    ADS  Article  Google Scholar 

  28. 28

    M. Bähr et al., Eur. Phys. J. 58, 639 (2008)

    ADS  Article  Google Scholar 

  29. 29

    S. Biondi, Study of the associated production of the Higgs boson with a top quark pair in a boosted regime in the ATLAS experiment at LHC, CERN-THESIS-2017-155

  30. 30

    ATLAS Collaboration, Eur. Phys. J. 75, 17 (2015)

    ADS  Article  Google Scholar 

  31. 31

    M. Cacciari, G.P. Salam, G. Soyez, JHEP 04, 63 (2008)

    ADS  Article  Google Scholar 

  32. 32

    ATLAS Collaboration, Performance of pile-up mitigation techniques for jets in pp collisions at $\sqrt{s} = 8$ TeV using the ATLAS detector, CERN-PH-EP-2015-206

  33. 33

    ATLAS Collaboration, Optimisation of the ATLAS b-tagging performance for th 2016 LHC Run, ATL-PHYS-PUB-2016-012

  34. 34

    ATLAS Collaboration, Expected performance of the ATLAS b-tagging algorithms in Run-2, ATL-PHYS-PUB2015-022

  35. 35

    D. Krohn, J. Thaler, L.-T. Wang, JHEP 02, 084 (2010)

    ADS  Article  Google Scholar 

  36. 36

    ATLAS Collaboration, Boosted hadronic top identification at ATLAS for early 13TeV data, ATL-PHYS-PUB-2015-053

  37. 37

    ATLAS Collaboration, Public plots: Large-radius jet performance plots using full 13TeV 2015 dataset, https://doi.org/atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/JETM-2015-004/

  38. 38

    Andrew J. Larkoski, Ian Moult, Duff Neill, JHEP 12, 009 (2014)

    ADS  Article  Google Scholar 

  39. 39

    Andrew J. Larkoski, Duff Neill, Jesse Thaler, JHEP 04, 017 (2014)

    ADS  Article  Google Scholar 

  40. 40

    J. Thaler, L.-T. Wang, JHEP 07, 092 (2008)

    ADS  Article  Google Scholar 

  41. 41

    M. Wolter, Phys. Part. Nucl. 38, 255 (2007)

    Article  Google Scholar 

  42. 42

    A. Hoeker, TMVA - Toolkit for Multivariate Data Analysis, CERN-OPEN-2007-007

  43. 43

    G. Cowan, K. Cranmer, E. Gross, O. Vitells, Eur. Phys. J. C 71, 1554 (2011)

    ADS  Article  Google Scholar 

  44. 44

    T. Junk, Nucl. Instrum. Methods A 434, 435 (1999)

    ADS  Article  Google Scholar 

  45. 45

    A.L. Read, J. Phys. G 28, 2693 (2002)

    ADS  Article  Google Scholar 

  46. 46

    ATLAS Collaration, Eur. Phys. J. 73, 2518 (2013)

    ADS  Article  Google Scholar 

  47. 47

    ATLAS Collaboration, Luminosity determination in pp collisions at $\sqrt{s} = 8$ TeV using the ATLAS detector at the LHC, CERN-EP-2016-117

  48. 48

    ATLAS Collaboration, Jet Calibration and Systematic Uncertainties for Jets Reconstructed in the ATLAS Detector at $\sqrt{s} = 13$ TeV, ATL-PHYS-PUB-2015-015 (2015)

  49. 49

    N. Kidonakis, Phys. Rev. D 82, 054018 (2010)

    ADS  Article  Google Scholar 

  50. 50

    N. Kidonakis, Phys. Rev. D 81, 054028 (2010)

    ADS  Article  Google Scholar 

  51. 51

    N. Kidonakis, Phys. Rev. D 83, 091503 (2011)

    ADS  Article  Google Scholar 

  52. 52

    ATLAS Collaboration, Multi-Boson Simulation for 13TeV ATLAS Analyses, ATL-PHYS-PUB-2016-002 (2016)

  53. 53

    J.M. Campbell, R.K. Ellis, JHEP 07, 052 (2012)

    ADS  Article  Google Scholar 

  54. 54

    W. Beenakker et al., Nucl. Phys. B 653, 151 (2003)

    ADS  Article  Google Scholar 

  55. 55

    S. Dawson et al., Phys. Rev. D 68, 034022 (2003)

    ADS  Article  Google Scholar 

  56. 56

    Y. Zhang et al., Phys. Lett. B 738, 1 (2014)

    ADS  Article  Google Scholar 

  57. 57

    S. Frixione et al., JHEP 06, 184 (2015)

    ADS  Article  Google Scholar 

  58. 58

    A. Djouadi, J. Kalinowski, M. Spira, Comput. Phys. Commun. 108, 56 (1998)

    ADS  Article  Google Scholar 

  59. 59

    M. Czakon, A. Mitov, Comput. Phys. Commun. 185, 2930 (2014)

    ADS  Article  Google Scholar 

  60. 60

    M. Czakon, D. Heymes, A. Mitov, Phys. Rev. Lett. 116, 082003 (2016)

    ADS  Article  Google Scholar 

  61. 61

    A.D. Martin et al., Eur. Phys. J. 63, 189 (2009)

    ADS  Article  Google Scholar 

  62. 62

    F. Demartin, F. Maltoni, K. Mawatari, B. Page, M. Zaro, Higgs characterisation at NLO in QCD: CP properties of the top-quark Yukawa interaction, arXiv:1407.5089

  63. 63

    F. Maltoni, E. Vryonidou, C. Zhang, JHEP 10, 123 (2016)

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Silvia Biondi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Biondi, S. Study of the associated production of the Higgs boson with a top quark pair in a boosted regime in the ATLAS experiment. Eur. Phys. J. Plus 133, 462 (2018). https://doi.org/10.1140/epjp/i2018-12290-8

Download citation