Skip to main content
Log in

A relativistic heat conducting model

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

The interior dynamics of a relativistic fluid in a shear-free spherically symmetric spacetime are investigated. The isotropic matter distribution is an imperfect fluid with a nonvanishing heat flux which is in the radial direction. The pressure isotropy condition is a second-order nonlinear ordinary differential equation with variable coefficients in the gravitational potentials. We impose a particular on these potentials and a new class of solutions are obtained, containing those of Bergmann and Modak. A physical analysis is then performed where the matter variables are graphically plotted and the energy conditions are shown to be satisfied. Causality is also shown not to be violated. An analysis of the temperature profiles indicates that closed form expressions can be generated for both the noncausal and causal cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.O. Santos, Mon. Not. R. Astron. Soc. 216, 403 (1985)

    Article  ADS  Google Scholar 

  2. E.N. Glass, J. Math. Phys. 20, 1508 (1990)

    Article  ADS  Google Scholar 

  3. Y. Deng, P.D. Mannheim, Phys. Rev. D 42, 371 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  4. Y. Deng, P.D. Mannheim, Phys. Rev. D 44, 1722 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  5. H. Stephani, D. Kramer, M. MacCallum, C. Hoenselaers, Exact solutions of Einstein’s equations (Cambridge University Press, Cambridge, 2003)

  6. B.V. Ivanov, Gen. Relativ. Gravit. 44, 1835 (2012)

    Article  ADS  Google Scholar 

  7. S. Wagh, K.S. Govinder, Gen. Relativ. Gravit. 38, 1253 (2006)

    Article  ADS  Google Scholar 

  8. L. Herrera, A. Di Prisco, J. Ospino, Phys. Rev. D 74, 044001 (2006)

    Article  ADS  Google Scholar 

  9. G.Z. Abebe, S.D. Maharaj, K.S. Govinder, Eur. Phys. J. C 75, 496 (2015)

    Article  ADS  Google Scholar 

  10. S.D. Maharaj, G. Govender, M. Govender, Pramana. J. Phys. 77, 469 (2011)

    Article  ADS  Google Scholar 

  11. L. Herrera, N.O. Santos, Mon. Not. R. Astron. Soc. 287, 868 (1987)

    Google Scholar 

  12. L. Herrera, G. Le Denmat, N.O. Santos, A. Wang, Int. J. Mod. Phys. D 13, 583 (2004)

    Article  ADS  Google Scholar 

  13. L. Herrera, G. Le Denmat, N.O. Santos, Phys. Rev. D 79, 087505 (2009)

    Article  ADS  Google Scholar 

  14. C. Eckart, Phys. Rev. 58, 919 (1940)

    Article  ADS  Google Scholar 

  15. R. Maartens, Class. Quantum Grav. 12, 1455 (1995)

    Article  ADS  Google Scholar 

  16. W. Israel, Ann. Phys. 100, 310 (1976)

    Article  ADS  Google Scholar 

  17. W. Israel, J.M. Stewart, Ann. Phys. 118, 341 (1979)

    Article  ADS  Google Scholar 

  18. B.P. Brassel, S.D. Maharaj, G. Govender, Adv. Math. Phys. 2015, 274251 (2015)

    Article  Google Scholar 

  19. B. Modak, J. Astrophys. Astron. 5, 317 (1984)

    Article  ADS  Google Scholar 

  20. A.M. Msomi, K.S. Govinder, S.D. Maharaj, Gen. Relativ. Gravit. 43, 1685 (2011)

    Article  ADS  Google Scholar 

  21. O. Bergmann, Phys. Lett. A 82, 383 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  22. R. Maartens, J. Triginer, Phys. Rev. D 56, 4640 (1997)

    Article  ADS  Google Scholar 

  23. J. Martínez, Phys. Rev. D 53, 6921 (1996)

    Article  ADS  Google Scholar 

  24. K.S. Govinder, M. Govender, Phys. Lett. A 283, 71 (2001)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil D. Maharaj.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Govender, G., Brassel, B.P. & Maharaj, S.D. A relativistic heat conducting model. Eur. Phys. J. Plus 133, 478 (2018). https://doi.org/10.1140/epjp/i2018-12287-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2018-12287-3

Navigation