Summary of the past, present and future of the X-ray astronomy

  • Emrah KalemciEmail author
Part of the following topical collections:
  1. Focus Point on Modern Astronomy: Selected Issues in Nuclear and High Energy Astrophysics


The first cosmic X-ray source Sco X-1 was discovered with an Aerobee rocket in 1962 by Riccardo Giacconi. Since then, the field of X-ray astronomy developed significantly, not only in terms of capabilities and technology of X-ray observatories, but also in terms of theoretical understanding of a very wide range of astronomical objects and fields. The X-ray astronomy usually refers to the energy range of fractions of keV to a few hundred keVs, and creation of these photons in large amounts requires extremely high temperatures, magnetic fields, and extreme environments. This review summarizes the historical development of X-ray astronomy, provides introductory information regarding X-ray detectors and telescopes, discusses the current operational X-ray observatories, and finally introduces a sample of upcoming X-ray observatories that will revolutionize the field in the near future.


  1. 1.
    E.M. Schlegel, The Restless Universe - Understanding X-Ray Astronomy in the Age of Chandra and Newton (Oxford University Press, Oxford, 2002)Google Scholar
  2. 2.
    F.D. Seward, P.A. Charles, Exploring the X-ray Universe (Cambridge University Press, Cambridge, 2010)Google Scholar
  3. 3.
    K. Arnaud, R. Smith, A. Siemiginowska, Handbook of X-ray Astronomy (Cambridge University Press, Cambridge, 2011)Google Scholar
  4. 4.
    M.S. Longair, High Energy Astrophysics (Cambridge University Press, Cambridge, 2011)Google Scholar
  5. 5.
    M. Gilfanov, Lecture Notes in Physics, Vol. 794 (Berlin Springer Verlag, Berlin, 2010) p. 17Google Scholar
  6. 6.
    D. Clowe, M. Bradač, A.H. Gonzalez, M. Markevitch, S.W. Randall, C. Jones, D. Zaritsky, Astrophys. J. 648, L109 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    R.P. Kraft, W.R. Forman, C. Jones, S.S. Murray, M.J. Hardcastle, D.M. Worrall, Astrophys. J. 569, 54 (2002)ADSCrossRefGoogle Scholar
  8. 8.
    J.M. Miller, J. Raymond, A. Fabian, D. Steeghs, J. Homan, C. Reynolds, M. van der Klis, R. Wijnands, Nature 441, 953 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    F. Özel, P. Freire, Annu. Rev. Astron. Astrophys. 54, 401 (2016)ADSCrossRefGoogle Scholar
  10. 10.
    R. Turolla, S. Zane, A.L. Watts, Rep. Prog. Phys. 78, 116901 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    N. Gehrels, P. Mészáros, Science 337, 932 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    B. Aschenbach, Rep. Progr. Phys. 48, 579 (1985)ADSCrossRefGoogle Scholar
  13. 13.
    R. Willingale, G. Pareschi, F. Christensen, J.-W. den Herder, arXiv:1307.1709 (2013)Google Scholar
  14. 14.
    E. Caroli, J.B. Stephen, G. Di Cocco, L. Natalucci, A. Spizzichino, Space Sci. Rev. 45, 349 (1987)ADSCrossRefGoogle Scholar
  15. 15.
    M.J. Cieś, Radiat. Meas. 92, 59 (2016)CrossRefGoogle Scholar
  16. 16.
    K.C. Gendreau, Space Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray, Vol. 9905 (2016) 99051HGoogle Scholar
  17. 17.
    F.A. Harrison et al., Astrophys. J. 770, 103 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    A. Merloni, arXiv:1209.3114 (2012)Google Scholar
  19. 19.
    K. Nandra, arXiv:1306.2307 (2013)Google Scholar
  20. 20.
    M.C. Weisskopf, Space Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray, Vol. 9905 (2016) 990517Google Scholar
  21. 21.
    P. Soffitta et al., Exp. Astron. 36, 523 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    S.N. Zhang, Space Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray, Vol. 9905 (2016) 99051QGoogle Scholar
  23. 23.
    C.A. Wilson-Hodge et al., Results Phys. 7, 3704 (2017)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Engineering and Natural SciencesSabanci UniversityIstanbulTurkey

Personalised recommendations