Skip to main content
Log in

Mixed ab initio and semiempirical study of hydrogen-terminated finite germanium nanowires

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

We present a mixed ab initio and semiempirical method for the cohesive energy and electronic gap calculations of hydrogen passivated tetrahedral and clathrate germanium nanowires (∼ 1850 atoms) with acceptable accuracy, comparable to density functional theory results, and with a significantly lower computational cost. First, we find that the PM6 semiempirical method produce the most accurate geometries when compared with the DFT results; whereas other semiempirical methods such as AM1, PM3 and PM7 clearly underestimate (or overestimate). Second, we implement the DFT@PM6 mixed scheme for cohesive/binding energy and electronic gap calculations which shows promising results compared with reference values of DFT. However, the bulk energy gap and binding energy values from the quantum confinement fitting procedure slightly underestimate the results which can be easily overcome using suitable functional and basis set/ECP. Also, a comparison with previous work clearly shows that the calculated electronic gap for bulk germanium is extremely sensitive to the choice of framework. Further development in this research work is progressing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Cui, Z. Zhong, D. Wang, W.U. Wang, C.M. Lieber, Nano Lett. 3, 149 (2003)

    Article  ADS  Google Scholar 

  2. Y. Huang, X. Duan, Y. Cui, L.J. Lauhon, K. Kim, C.M. Lieber, Science 294, 1313 (2001)

    Article  ADS  Google Scholar 

  3. Y. Cui, Q. Wei, H. Park, C.M. Lieber, Science 293, 1289 (2001)

    Article  ADS  Google Scholar 

  4. B. Polyakov, B. Daly, J. Prikulis, V. Lisauskas, B. Vengalis, M.A. Morris, J.D. Holmes, D. Erts, Adv. Mater. 18, 1812 (2006)

    Article  Google Scholar 

  5. Y. Wu, P.D. Yang, Chem. Mater. 12, 605 (2000)

    Article  Google Scholar 

  6. B. Yu, X.H. Sun, G.A. Calebotta, G.R. Dholakia, M. Meyyappan, J. Clust. Sci. 17, 579 (2006)

    Article  Google Scholar 

  7. S. Patibandla, S. Pramanik, S. Bandyopadhyaya, G.C. Tepper, J. Appl. Phys. 100, 044303 (2006)

    Article  ADS  Google Scholar 

  8. E. Garnett, P. Yang, Nano Lett. 10, 1082 (2010)

    Article  ADS  Google Scholar 

  9. C.K. Chan, X.F. Zhang, Y. Cui, Nano Lett. 8, 307 (2008)

    Article  ADS  Google Scholar 

  10. Y.H. Ahn, J. Park, Appl. Phys. Lett. 91, 162102 (2007)

    Article  ADS  Google Scholar 

  11. M.C. McAlpine, H. Ahmad, D. Wang, J.R. Heath, Nat. Mater. 6, 379 (2007)

    Article  ADS  Google Scholar 

  12. M. Amato, S. Ossicini, R. Rurali, Nano Lett. 11, 594 (2011)

    Article  ADS  Google Scholar 

  13. D. Wang, Y. Chang, Z. Liu, H. Dai, J. Am. Chem. Soc. 127, 11871 (2005)

    Article  Google Scholar 

  14. P. Nguyen, H.T. Ng, M. Meyyappan, Adv. Mater. 17, 549 (2005)

    Article  Google Scholar 

  15. D. Wang, Q. Wang, A. Javey, R. Tu, H.J. Dai, H. Kim, P.C. McIntyre, T. Krishnamohan, K.C. Saraswat, Appl. Phys. Lett. 83, 2432 (2003)

    Article  ADS  Google Scholar 

  16. A.B. Greytak, L.J. Lauhon, M.S. Gudiksen, C.M. Lieber, Appl. Phys. Lett. 84, 4176 (2004)

    Article  ADS  Google Scholar 

  17. S. Niaz, S. Slimani, M.A. Badar, G. Subhan, M.A. Khan, Sensors Transducers 189, 162 (2015)

    Google Scholar 

  18. A. Nduwimana, X.Q. Wang, J. Phys. Chem. C 114, 9702 (2010)

    Article  Google Scholar 

  19. H. Adhikari, P.C. McIntyre, S.Y. Sun, P. Pianetta, C.E.D. Chidsey, Appl. Phys. Lett. 87, 263109 (2005)

    Article  ADS  Google Scholar 

  20. G. Collins, P. Fleming, S. Barth, C. O’Dwyer, J.J. Boland, M.A. Morris, J.D. Holmes, Chem. Mater. 22, 6370 (2010)

    Article  Google Scholar 

  21. D.W. Wang, Y.L. Chang, Z. Liu, H.J. Dai, J. Am. Chem. Soc. 127, 11871 (2005)

    Article  Google Scholar 

  22. J.T. Arantes, A. Fazzio, Nanotechnology 18, 295706 (2007)

    Article  Google Scholar 

  23. S.P. Beckman, J. Han, J.R. Chelikowsky, Phys. Rev. B 74, 165314 (2006)

    Article  ADS  Google Scholar 

  24. M. Bescond, N. Cavassilas, K. Nehari, M. Lannoo, J. Comput. Electron. 6, 341 (2007)

    Article  Google Scholar 

  25. C. Harris, E.P. O’Reilly, Physica E 32, 341 (2006)

    Article  ADS  Google Scholar 

  26. D. Medaboina, V. Gade, S.K.R. Patil, S.V. Khare, Phys. Rev. B 76, 205327 (2007)

    Article  ADS  Google Scholar 

  27. M. Jing, M. Ni, W. Song, J. Lu, Z. Gao, L. Lai, W.N. Mei, D. Yu, H. Ye, L. Wang, J. Phys. Chem. B 110, 18332 (2006)

    Article  Google Scholar 

  28. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  29. G. Igel-Mann, H. Stoll, H. Preuss, Mol. Phys. 65, 1321 (1988)

    Article  ADS  Google Scholar 

  30. A. Bergner, M. Dolg, W. Kuechle, H. Stoll, H. Preuss, Mol. Phys. 80, 1431 (1993)

    Article  ADS  Google Scholar 

  31. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, (1990). Gaussian 09 (Gaussian. Inc., Wallingford, CT, USA, 2009) 542

  32. M.J.S. Dewar, E.G. Zoebisch, E.F. Healy, J.J.P. Stewart, J. Am. Chem. Soc. 107, 3902 (1985)

    Article  Google Scholar 

  33. M.J.S. Dewar, J. Caoxian, Organometallics 8, 1544 (1989)

    Article  Google Scholar 

  34. M.J.S. Dewar, J. Comput. Chem. 10, 221 (1989)

    Article  Google Scholar 

  35. M.J.S. Dewar, J. Mol. Modeling 13, 1173 (2007)

    Article  Google Scholar 

  36. J.J.P. Stewart, J. Mol. Modeling 19, 1 (2013)

    Article  Google Scholar 

  37. MOPAC2012, J.J.P. Stewart, Stewart Computational Chemistry, http://OpenMOPAC.net (Colorado Springs, CO, USA, 2012)

  38. MOPAC2016, J.J.P. Stewart, Stewart Computational Chemistry, http://OpenMOPAC.net (Colorado Springs, CO, USA, 2016)

  39. L. Tian, F. Chen, J. Comput. Chem. 33, 580 (2012)

    Article  Google Scholar 

  40. N.M. O’Boyle, A.L. Tenderholt, K.M. Langner, J. Comput. Chem. 29, 839 (2008)

    Article  Google Scholar 

  41. S. Niaz, A.D. Zdetsis, J. Phys. Chem. C 120, 11288 (2016)

    Article  Google Scholar 

  42. S. Niaz, E.N. Koukaras, N.P. Katsougrakis, T.G. Kourelis, D.K. Kougias, A.D. Zdetsis, Microelectron. Eng. 112, 231 (2013)

    Article  Google Scholar 

  43. C. Kittel, Introduction to Solid State Physics, 6th ed. (John Wiley & Sons, New York, 1986)

  44. S. Niaz, A.D. Zdetsis, M.A. Badar, S. Hussain, I. Sadiq, M.A. Khan, J. Chem. Soc. Pak. 38, 207 (2016)

    Google Scholar 

  45. M. Bruno, M. Palummo, S. Ossicini, R. Del Sole, Surf. Sci. 601, 2707 (2007)

    Article  ADS  Google Scholar 

  46. D. Medaboina, V. Gade, S.K.R. Patil, S.V. Khare, Phys. Rev. B 76, 205327 (2007)

    Article  ADS  Google Scholar 

  47. A.N. Kholod, V.L. Shaposhnikov, N. Sobolev, V.E. Borisenko, F.A. D’Avitaya, S. Ossicini, Phys. Rev. B 70, 035317 (2004)

    Article  ADS  Google Scholar 

  48. C. Kittel, Introduction to Solid State Physics, 8th ed. (John Wiley & Sons, Hoboken, NJ, 2005)

  49. E.N. Koukaras, S. Niaz, D.A. Zdetsis, A.D. Zdetsis, Microelectron. Eng. 90, 88 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanawer Niaz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niaz, S., Gülseren, O., Khan, M.A. et al. Mixed ab initio and semiempirical study of hydrogen-terminated finite germanium nanowires. Eur. Phys. J. Plus 133, 448 (2018). https://doi.org/10.1140/epjp/i2018-12279-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2018-12279-3

Navigation