Skip to main content
Log in

Singlet scalar dark matter in U(1)B-L models without right-handed neutrinos

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

We investigate the phenomenology of singlet scalar dark matter in a simple B-L gauge extension of the Standard Model where the dark matter particle is charged under the \( U(1)_{B-L}\) symmetry. The non-trivial gauge anomalies are cancelled with the introduction of three exotic fermions with B-L charges as -4, -4, 5, instead of right-handed neutrinos \(\nu_{Ri} (i=1,2,3)\), with B-L = -1 in the conventional \( U(1)_{B-L}\) model. Without the need of any ad hoc discrete symmetry, the B -L charge plays a crucial role in stabilizing the dark matter. We make a comprehensive study of dark matter phenomenology in the scalar and gauge portals separately. In the gauge-mediated regime, we invoke the LEP-II constraints and dilepton limits of ATLAS on the gauge parameters. A massless physical Goldstone plays a vital role in the scalar-portal dark matter observables, becomes a unique feature of the model. We show the mechanism of generating the light neutrino mass at one-loop level, where the dark matter singlet runs in the loop. We shed light on the semi-annihilation and, finally, we comment on indirect signals in this framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Planck Collaboration (P.A.R. Ade et al.), Astron. Astrophys. 594, A13 (2016) arXiv:1502.01589

    Article  Google Scholar 

  2. G. Arcadi, M. Dutra, P. Ghosh, M. Lindner, Y. Mambrini, M. Pierre, S. Profumo, F.S. Queiroz, The Waning of the WIMP? A Review of Models, Searches, and Constraints, arXiv:1703.07364

  3. E.E. Jenkins, Phys. Lett. B 192, 219 (1987)

    Article  ADS  Google Scholar 

  4. W. Buchmuller, C. Greub, P. Minkowski, Phys. Lett. B 267, 395 (1991)

    Article  ADS  Google Scholar 

  5. L. Basso, A. Belyaev, S. Moretti, C.H. Shepherd-Themistocleous, Phys. Rev. D 80, 055030 (2009) arXiv:0812.4313

    Article  ADS  Google Scholar 

  6. W. Emam, S. Khalil, Eur. Phys. J. C 52, 625 (2007) arXiv:0704.1395

    Article  ADS  Google Scholar 

  7. S. Khalil, J. Phys. G 35, 055001 (2008) arXiv:hep-ph/0611205

    Article  Google Scholar 

  8. S. Iso, N. Okada, Y. Orikasa, Phys. Lett. B 676, 81 (2009) arXiv:0902.4050

    Article  ADS  Google Scholar 

  9. S. Kanemura, T. Matsui, H. Sugiyama, Phys. Rev. D 90, 013001 (2014) arXiv:1405.1935

    Article  ADS  Google Scholar 

  10. M. Lindner, D. Schmidt, T. Schwetz, Phys. Lett. B 705, 324 (2011) arXiv:1105.4626

    Article  ADS  Google Scholar 

  11. N. Okada, S. Okada, Phys. Rev. D 93, 075003 (2016) arXiv:1601.07526

    Article  ADS  Google Scholar 

  12. N. Okada, S. Okada, Phys. Rev. D 95, 035025 (2017) arXiv:1611.02672

    Article  ADS  Google Scholar 

  13. S. Bhattacharya, S. Jana, S. Nandi, Phys. Rev. D 95, 055003 (2017) arXiv:1609.03274

    Article  ADS  Google Scholar 

  14. A. Biswas, S. Choubey, S. Khan, JHEP 08, 114 (2016) arXiv:1604.06566

    Article  ADS  Google Scholar 

  15. W. Wang, Z.-L. Han, Phys. Rev. D 92, 095001 (2015) arXiv:1508.00706

    Article  ADS  Google Scholar 

  16. M. Klasen, F. Lyonnet, F.S. Queiroz, NLO+NLL Collider Bounds, Dirac Fermion and Scalar Dark Matter in the B-L Model, arXiv:1607.06468

  17. W. Rodejohann, C.E. Yaguna, JCAP 12, 032 (2015) arXiv:1509.04036

    Article  ADS  Google Scholar 

  18. M. Lindner, D. Schmidt, A. Watanabe, Phys. Rev. D 89, 013007 (2014) arXiv:1310.6582

    Article  ADS  Google Scholar 

  19. N. Okada, O. Seto, Phys. Rev. D 82, 023507 (2010) arXiv:1002.2525

    Article  ADS  Google Scholar 

  20. N. Okada, Y. Orikasa, Phys. Rev. D 85, 115006 (2012) arXiv:1202.1405

    Article  ADS  Google Scholar 

  21. T. Basak, T. Mondal, Phys. Rev. D 89, 063527 (2014) arXiv:1308.0023

    Article  ADS  Google Scholar 

  22. B.L. Snchez-Vega, J.C. Montero, E.R. Schmitz, Phys. Rev. D 90, 055022 (2014) arXiv:1404.5973

    Article  ADS  Google Scholar 

  23. M. Duerr, P. Fileviez Perez, J. Smirnov, Phys. Rev. D 92, 083521 (2015) arXiv:1506.05107

    Article  ADS  Google Scholar 

  24. J. Guo, Z. Kang, P. Ko, Y. Orikasa, Phys. Rev. D 91, 115017 (2015) arXiv:1502.00508

    Article  ADS  Google Scholar 

  25. A. Dasgupta, C. Hati, S. Patra, U. Sarkar, A minimal model of TeV scale WIMPy leptogenesis, arXiv:1605.01292

  26. T. Modak, S. Sadhukhan, R. Srivastava, Phys. Lett. B 756, 405 (2016) arXiv:1601.00836

    Article  ADS  Google Scholar 

  27. E. Ma, R. Srivastava, Phys. Lett. B 741, 217 (2015) arXiv:1411.5042

    Article  ADS  Google Scholar 

  28. E. Ma, R. Srivastava, Mod. Phys. Lett. A 30, 1530020 (2015) arXiv:1504.00111

    Article  ADS  Google Scholar 

  29. E. Ma, N. Pollard, R. Srivastava, M. Zakeri, Phys. Lett. B 750, 135 (2015) arXiv:1507.03943

    Article  ADS  Google Scholar 

  30. S. Patra, W. Rodejohann, C.E. Yaguna, JHEP 09, 076 (2016) arXiv:1607.04029

    Article  ADS  Google Scholar 

  31. P. Minkowski, Phys. Lett. B 67, 421 (1977)

    Article  ADS  Google Scholar 

  32. R.N. Mohapatra, G. Senjanovic, Phys. Rev. Lett. 44, 912 (1980)

    Article  ADS  Google Scholar 

  33. J. Schechter, J.W.F. Valle, Phys. Rev. D 22, 2227 (1980)

    Article  ADS  Google Scholar 

  34. M. Gell-Mann, P. Ramond, R. Slansky, Conf. Proc. C 790927, 315 (1979) arXiv:1306.4669

    Google Scholar 

  35. J.C. Montero, V. Pleitez, Phys. Lett. B 675, 64 (2009) arXiv:0706.0473

    Article  ADS  Google Scholar 

  36. S. Singirala, R. Mohanta, S. Patra, S. Rao, Majorana Dark Matter in a new B-L model, arXiv:1710.05775

  37. K. Kannike, Eur. Phys. J. C 72, 2093 (2012) arXiv:1205.3781

    Article  ADS  Google Scholar 

  38. K. Kannike, Eur. Phys. J. C 76, 324 (2016) arXiv:1603.02680

    Article  ADS  Google Scholar 

  39. B.W. Lee, C. Quigg, H.B. Thacker, Phys. Rev. D 16, 1519 (1977)

    Article  ADS  Google Scholar 

  40. G. Belanger, B. Dumont, U. Ellwanger, J.F. Gunion, S. Kraml, Phys. Lett. B 723, 340 (2013) arXiv:1302.5694

    Article  ADS  Google Scholar 

  41. P.P. Giardino, K. Kannike, I. Masina, M. Raidal, A. Strumia, JHEP 05, 046 (2014) arXiv:1303.3570

    Article  ADS  Google Scholar 

  42. S. Weinberg, Phys. Rev. Lett. 110, 241301 (2013) arXiv:1305.1971

    Article  ADS  Google Scholar 

  43. E. Ma, Phys. Rev. D 73, 077301 (2006) arXiv:hep-ph/0601225

    Article  ADS  Google Scholar 

  44. G. Belanger, K. Kannike, A. Pukhov, M. Raidal, JCAP 06, 021 (2014) arXiv:1403.4960

    Article  ADS  Google Scholar 

  45. S. Iso, N. Okada, Y. Orikasa, Phys. Rev. D 80, 115007 (2009) arXiv:0909.0128

    Article  ADS  Google Scholar 

  46. A.V. Semenov, LanHEP: A Package for automatic generation of Feynman rules in gauge models, arXiv:hep-ph/9608488

  47. A. Pukhov, E. Boos, M. Dubinin, V. Edneral, V. Ilyin, D. Kovalenko, A. Kryukov, V. Savrin, S. Shichanin, A. Semenov, CompHEP: A Package for evaluation of Feynman diagrams and integration over multiparticle phase space, arXiv:hep-ph/9908288

  48. G. Belanger, F. Boudjema, A. Pukhov, A. Semenov, Comput. Phys. Commun. 176, 367 (2007) arXiv:hep-ph/0607059

    Article  ADS  Google Scholar 

  49. G. Belanger, F. Boudjema, A. Pukhov, A. Semenov, Comput. Phys. Commun. 180, 747 (2009) arXiv:0803.2360

    Article  ADS  Google Scholar 

  50. M.W. Goodman, E. Witten, Phys. Rev. D 31, 3059 (1985)

    Article  ADS  Google Scholar 

  51. G. Jungman, M. Kamionkowski, K. Griest, Phys. Rep. 267, 195 (1996) arXiv:hep-ph/9506380

    Article  ADS  Google Scholar 

  52. S. Khalil, H. Okada, T. Toma, JHEP 07, 026 (2011) arXiv:1102.4249

    Article  ADS  Google Scholar 

  53. C.-W. Chiang, T. Nomura, J. Tandean, Phys. Rev. D 87, 073004 (2013) arXiv:1205.6416

    Article  ADS  Google Scholar 

  54. S. Kanemura, T. Nabeshima, H. Sugiyama, Phys. Rev. D 85, 033004 (2012) arXiv:1111.0599

    Article  ADS  Google Scholar 

  55. J.-M. Zheng, Z.-H. Yu, J.-W. Shao, X.-J. Bi, Z. Li, H.-H. Zhang, Nucl. Phys. B 854, 350 (2012) arXiv:1012.2022

    Article  ADS  Google Scholar 

  56. Y. Farzan, E. Ma, Phys. Rev. D 86, 033007 (2012) arXiv:1204.4890

    Article  ADS  Google Scholar 

  57. K. Kohri, N. Sahu, Phys. Rev. D 88, 103001 (2013) arXiv:1306.5629

    Article  ADS  Google Scholar 

  58. XENON Collaboration (E. Aprile), First Dark Matter Search Results from the XENON1T Experiment, arXiv:1705.06655

  59. LUX Collaboration (D.S. Akerib et al.), Phys. Rev. Lett. 118, 021303 (2017) arXiv:1608.07648

    Article  ADS  Google Scholar 

  60. The ATLAS Collaboration, Search for new phenomena in the dilepton final state using proton-proton collisions at $s=13$TeV with the ATLAS detector, ATLAS-CONF-2015-070 (2015)

  61. A. Belyaev, N.D. Christensen, A. Pukhov, Comput. Phys. Commun. 184, 1729 (2013) arXiv:1207.6082

    Article  ADS  Google Scholar 

  62. K. Kong, TASI 2011: CalcHEP and PYTHIA Tutorials, in The Dark Secrets of the Terascale: Proceedings, TASI 2011, Boulder, Colorado, USA, Jun 6 - Jul 11, 2011 (World Scientific, 2013) pp. 161, https://doi.org/10.1142/9789814390163_0004, https://doi.org/arXiv:1208.0035

  63. DELPHI, OPAL, LEP Electroweak, ALEPH, L3 Collaborations (S. Schael et al.), Phys. Rep. 532, 119 (2013) arXiv:1302.3415

    Article  ADS  Google Scholar 

  64. J.R. Ellis, A. Ferstl, K.A. Olive, Phys. Lett. B 481, 304 (2000) arXiv:hep-ph/0001005

    Article  ADS  Google Scholar 

  65. F. D’Eramo, J. Thaler, JHEP 06, 109 (2010) arXiv:1003.5912

    Article  ADS  Google Scholar 

  66. F. Calore, I. Cholis, C. McCabe, C. Weniger, Phys. Rev. D 91, 063003 (2015) arXiv:1411.4647

    Article  ADS  Google Scholar 

  67. T. Daylan, D.P. Finkbeiner, D. Hooper, T. Linden, S.K.N. Portillo, N.L. Rodd, T.R. Slatyer, Phys. Dark Univ. 12, 1 (2016) arXiv:1402.6703

    Article  Google Scholar 

  68. P. Agrawal, B. Batell, P.J. Fox, R. Harnik, JCAP 05, 011 (2015) arXiv:1411.2592

    Article  ADS  Google Scholar 

  69. PAMELA Collaboration (O. Adriani et al.), Phys. Rev. Lett. 111, 081102 (2013) arXiv:1308.0133

    Article  Google Scholar 

  70. AMS Collaboration (M. Aguilar et al.), Phys. Rev. Lett. 113, 121102 (2014)

    Article  ADS  Google Scholar 

  71. M. Boudaud et al., Astron. Astrophys. 575, A67 (2015) arXiv:1410.3799

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rukmani Mohanta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singirala, S., Mohanta, R. & Patra, S. Singlet scalar dark matter in U(1)B-L models without right-handed neutrinos. Eur. Phys. J. Plus 133, 477 (2018). https://doi.org/10.1140/epjp/i2018-12270-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2018-12270-0

Navigation