Skip to main content
Log in

Resonance interaction between uniformly rotating two-level entangled atoms

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

We investigate the influence of acceleration and boundaries on the resonance interaction between two identical two-level entangled atoms in synchronous circular motions mediated by a fluctuating massless quantum scalar field. In the ultra-relativistic limit, we give the analytical results of the resonance interaction energy either in the absence or in the presence of a reflecting plane boundary. Our results indicate that the interatomic resonance interaction energy depends on the atomic intrinsic energy level spacing, the atomic acceleration, the interatomic separation, and the distance of the atoms from the boundary. By adjusting these parameters, the resonance interatomic force can be either enhanced or weakened and even its direction can be altered as compared with the case of two inertial entangled atoms in an unbounded Minkowski spacetime. Our work clearly suggests that the resonance interatomic interaction can be regulated and controlled significantly by changing the atomic motion state and the field’s boundary condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Heitler, The Quantum Theory of Radiation, 3rd ed. (Clarendon Press, Oxford, 1954)

  2. P.W. Milonni, Phys. Rep. 25, 1 (1976)

    Article  ADS  Google Scholar 

  3. W.E. Lamb Jr., R.C. Retherford, Phys. Rev. 72, 241 (1947)

    Article  ADS  Google Scholar 

  4. J. Dalibard, J. Dupont-Roc, C. Cohen-Tannoudji, J. Phys. (Paris) 43, 1617 (1982)

    Article  Google Scholar 

  5. J. Dalibard, J. Dupont-Roc, C. Cohen-Tannoudji, J. Phys. (Paris) 45, 637 (1984)

    Article  Google Scholar 

  6. H.B.G. Casimir, K. Ned. Akad. Wetensch. Proc. 51, 793 (1948)

    Google Scholar 

  7. H.B.G. Casimir, D. Polder, Phys. Rev. 73, 360 (1948)

    Article  ADS  Google Scholar 

  8. S.A. Fulling, Phys. Rev. D 7, 2850 (1973)

    Article  ADS  Google Scholar 

  9. P.C.W. Davies, J. Phys. A: Math. Gen. 8, 609 (1975)

    Article  ADS  Google Scholar 

  10. W.G. Unruh, Phys. Rev. D 14, 870 (1976)

    Article  ADS  Google Scholar 

  11. J. Audretsch, R. Müller, Phys. Rev. A 50, 1755 (1994)

    Article  ADS  Google Scholar 

  12. H. Yu, S. Lu, Phys. Rev. D 72, 064022 (2005)

    Article  ADS  Google Scholar 

  13. Z. Zhu, H. Yu, S. Lu, Phys. Rev. D 73, 107501 (2006)

    Article  ADS  Google Scholar 

  14. H. Yu, Z. Zhu, Phys. Rev. D 74, 044032 (2006)

    Article  ADS  Google Scholar 

  15. J. Audretsch, R. Müller, Phys. Rev. A 52, 629 (1995)

    Article  ADS  Google Scholar 

  16. L. Rizzuto, Phys. Rev. A 76, 062114 (2007)

    Article  ADS  Google Scholar 

  17. R. Passante, Phys. Rev. A 57, 1590 (1998)

    Article  ADS  Google Scholar 

  18. Z. Zhu, H. Yu, Phys. Rev. A 82, 042108 (2010)

    Article  ADS  Google Scholar 

  19. O. Levin, Y. Peleg, A. Peres, J. Phys. A: Math. Gen. 26, 3001 (1993)

    Article  ADS  Google Scholar 

  20. V.A. De Lorenci, R.D.M. De Paola, N.F. Svaiter, Class. Quantum Grav. 17, 4241 (2000)

    Article  ADS  Google Scholar 

  21. Y. Jin, J. Hu, H. Yu, Ann. Phys. 344, 97 (2014)

    Article  ADS  Google Scholar 

  22. J. Chen, J. Hu, H. Yu, Ann. Phys. 353, 317 (2015)

    Article  ADS  Google Scholar 

  23. J. Yang, H. Yu, Ann. Phys. 363, 194 (2015)

    Article  ADS  Google Scholar 

  24. D.P. Craig, T. Thirunamachandran, Molecular Quantum Electrodynamics: An Introduction to Radiation-Molecule Interactions (Dover, 1998)

  25. A. Salam, Molecular Quantum Electrodynamics: Long-Range Intermolecular Interactions (Wiley, 2010)

  26. L. Rizzuto, R. Passante, F. Persico, Phys. Rev. A 70, 012107 (2004)

    Article  ADS  Google Scholar 

  27. P.W. Milonni, S.M.H. Rafsanjani, Phys. Rev. A 92, 062711 (2015)

    Article  ADS  Google Scholar 

  28. P.R. Berman, Phys. Rev. A 91, 042127 (2015)

    Article  ADS  Google Scholar 

  29. U.D. Jentschura, V. Debierre, Phys. Rev. A 95, 042506 (2017)

    Article  ADS  Google Scholar 

  30. P. Barcellona, R. Passante, L. Rizzuto, S.Y. Buhmann, Phys. Rev. A 94, 012705 (2016)

    Article  ADS  Google Scholar 

  31. L. Rizzuto, M. Lattuca, J. Marino, A. Noto, S. Spagnolo, W. Zhou, R. Passante, Phys. Rev. A 94, 012121 (2016)

    Article  ADS  Google Scholar 

  32. W. Zhou, R. Passante, L. Rizzuto, Phys. Rev. D 94, 105025 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  33. M. Lattuca, J. Marino, A. Noto, R. Passante, L. Rizzuto, S. Spagnolo, W. Zhou, J. Phys.: Conf. Ser. 880, 012042 (2017)

    Google Scholar 

  34. R. Incardone, T. Fukuta, S. Tanaka, T. Petrosky, L. Rizzuto, R. Passante, Phys. Rev. A 89, 062117 (2014)

    Article  ADS  Google Scholar 

  35. V. Notararigo, R. Passante, L. Rizzuto, Sci. Rep. 8, 5193 (2018)

    Article  ADS  Google Scholar 

  36. W. Zhou, L. Rizzuto, R. Passante, Phys. Rev. A 97, 042503 (2018)

    Article  ADS  Google Scholar 

  37. W. Zhou, R. Passante, L. Rizzuto, Symmetry 10, 185 (2018)

    Article  Google Scholar 

  38. D. Meschede, W. Jhe, E.A. Hinds, Phys. Rev. A 41, 1587 (1990)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huabing Cai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, H., Li, Z. & Ren, Z. Resonance interaction between uniformly rotating two-level entangled atoms. Eur. Phys. J. Plus 133, 458 (2018). https://doi.org/10.1140/epjp/i2018-12266-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2018-12266-8

Navigation