Skip to main content
Log in

Quantum correlation and squeezing dynamics of a dissipative nonlinear optomechanical oscillator: Heisenberg-Langevin approach

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

In this paper, an optomechanical cavity that is quadratically coupled to the cavity field and formed by a micropillar with Bragg reflectors and a thin dielectric membrane, is studied. In addition, it is considered that this interaction occurs in the presence of Kerr medium, external laser field and damping effects (for cavity field and moving Bragg reflector). Using the Heisenberg-Langevin approach, the dynamics of quantum correlation functions (for cavity field and moveable reflector) and squeezing parameters for quadratures of the cavity field are investigated. In each case, the influences of optomechanical coupling, detuning parameter, thermal mean number of cavity photons and phonons, damping parameters and Kerr medium on the above nonclassicality features are analyzed in detail. It is illustrated that the amount of the above-mentioned physical phenomena can be controlled by appropriately choosing the evolved parameters. Also, we show that photon and phonon blockades emerge in some special cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.C. Schwab, M.L. Roukes, Phys. Today 58, 36 (2005)

    Article  Google Scholar 

  2. J.-Q. Liao, L. Tian, Phys. Rev. Lett. 116, 163602 (2016)

    Article  ADS  Google Scholar 

  3. T. Purdy, P.-L. Yu, R. Peterson, N. Kampel, C. Regal, Phys. Rev. X 3, 031012 (2013)

    Google Scholar 

  4. A. Kronwald, F. Marquardt, A.A. Clerk, New J. Phys. 16, 063058 (2014)

    Article  ADS  Google Scholar 

  5. J.M. Dobrindt, I. Wilson-Rae, T.J. Kippenberg, Phys. Rev. Lett. 101, 263602 (2008)

    Article  ADS  Google Scholar 

  6. S. Gröblacher, K. Hammerer, M.R. Vanner, M. Aspelmeyer, Nature 460, 724 (2009)

    Article  ADS  Google Scholar 

  7. J.-S. Zhang, W. Zeng, A.-X. Chen, Quantum Inf. Process. 16, 163 (2017)

    Article  ADS  Google Scholar 

  8. A. Chen, W. Nie, L. Li, W. Zeng, Q. Liao, X. Xiao, Opt. Commun. 403, 97 (2017)

    Article  ADS  Google Scholar 

  9. Z.-q. Yin, W. Yang, L. Sun, L. Duan, Phys. Rev. A 91, 012333 (2015)

    Article  ADS  Google Scholar 

  10. D.-Y. Wang, C.-H. Bai, H.-F. Wang, A.-D. Zhu, S. Zhang, Sci. Rep. 6, 38559 (2016)

    Article  ADS  Google Scholar 

  11. S.K. Singh, S. Muniandy, Int. J. Theor. Phys. 55, 287 (2016)

    Article  Google Scholar 

  12. J.H. Lee, H. Seok, Phys. Rev. A 97, 013805 (2018)

    Article  ADS  Google Scholar 

  13. R. Leijssen, G.R. La Gala, L. Freisem, J.T. Muhonen, E. Verhagen, Nat. Commun. 8, ncomms16024 (2017)

    Article  Google Scholar 

  14. O. Kyriienko, T.C.H. Liew, I.A. Shelykh, Phys. Rev. Lett. 112, 076402 (2014)

    Article  ADS  Google Scholar 

  15. T. Kumar, A.B. Bhattacherjee et al., Phys. Rev. A 81, 013835 (2010)

    Article  ADS  Google Scholar 

  16. S. Shahidani, M. Naderi, M. Soltanolkotabi, S. Barzanjeh, J. Opt. Soc. Am. B 31, 1087 (2014)

    Article  ADS  Google Scholar 

  17. M. Fox, Quantum Optics: An Introduction, Vol. 15 (Oxford University Press, Oxford, 2006)

  18. L. Mandel, Opt. Lett. 4, 205 (1979)

    Article  ADS  Google Scholar 

  19. A. Imamolu, H. Schmidt, G. Woods, M. Deutsch, Phys. Rev. Lett. 79, 1467 (1997)

    Article  ADS  Google Scholar 

  20. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2000)

  21. N. Gisin, G. Ribordy, W. Tittel, H. Zbinden, Rev. Mod. Phys. 74, 145 (2002)

    Article  ADS  Google Scholar 

  22. X.-B. Wang, T. Hiroshima, A. Tomita, M. Hayashi, Phys. Rep. 448, 1 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  23. M.O. Scully, M.S. Zubairy, Quantum Optics (Cambridge University Press, 1999)

  24. R. Schnabel, Phys. Rep. 684, 1 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  25. E. Oelker, G. Mansell, M. Tse, J. Miller, F. Matichard, L. Barsotti, P. Fritschel, D. McClelland, M. Evans, N. Mavalvala, Optica 3, 682 (2016)

    Article  Google Scholar 

  26. H.P. Yuen, Phys. Rev. A 13, 2226 (1976)

    Article  ADS  Google Scholar 

  27. C. Gardiner, Phys. Rev. Lett. 56, 1917 (1986)

    Article  ADS  Google Scholar 

  28. H. Carmichael, A. Lane, D. Walls, J. Mod. Opt. 34, 821 (1987)

    Article  ADS  Google Scholar 

  29. A. Fainstein, N.D. Lanzillotti-Kimura, B. Jusserand, B. Perrin, Phys. Rev. Lett. 110, 037403 (2013)

    Article  ADS  Google Scholar 

  30. J. Thompson, B. Zwickl, A. Jayich, F. Marquardt, S. Girvin, J. Harris, Nature 452, 72 (2008)

    Article  ADS  Google Scholar 

  31. S. Singh, C.R. Ooi, J. Opt. Soc. Am. B 31, 2390 (2014)

    Article  ADS  Google Scholar 

  32. X.-W. Xu, Y.-J. Li, Y.-X. Liu, Phys. Rev. A 87, 025803 (2013)

    Article  ADS  Google Scholar 

  33. X. Wang, A. Miranowicz, H.-R. Li, F. Nori, Phys. Rev. A 93, 063861 (2016)

    Article  ADS  Google Scholar 

  34. S. Mancini, P. Tombesi, Phys. Rev. Lett. 49, 4055 (1994)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Reza Baghshahi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Javad Salehi, M., Reza Baghshahi, H. & Yahya Mirafzali, S. Quantum correlation and squeezing dynamics of a dissipative nonlinear optomechanical oscillator: Heisenberg-Langevin approach. Eur. Phys. J. Plus 133, 471 (2018). https://doi.org/10.1140/epjp/i2018-12261-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2018-12261-1

Navigation