Ancilla-induced amplification of quantum Fisher information

  • C. S. Sudheer KumarEmail author
  • T. S. Mahesh
Regular Article


Given a quantum state with an unknown parameter being measured with a suitable observable, Quantum Fisher Information (QFI) is the amount of information that one can extract about the unknown parameter. QFI also quantifies the maximum achievable precision in estimating the unknown parameter with a given amount of resource via quantum Cramer-Rao bound. In this work, we describe a protocol to amplify QFI of a single target qubit precorrelated with a set of ancillary qubits. Using an NMR system as an example, we show that a single quadrature NMR signal of only ancillary qubits suffices to perform the quantum state tomography (QST) of target qubit’s deviation part of the density matrix. We experimentally demonstrate this protocol using a star-topology spin-system consisting of a 13 C nuclear spin as the target qubit and three 1 H nuclear spins as ancillary qubits. We prepare the target qubit in various initial states, perform experimental QST, and estimate the amplification of QFI in each case. We also show that, in a high-temperature scenario like in the case of NMR, the QFI amplification scales linearly with the number of ancillary qubits and quadratically with the Bloch radius.


  1. 1.
    M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2010)
  2. 2.
    D.P. DiVincenzo, The physical implementation of quantum computation, arXiv:quant-ph/0002077Google Scholar
  3. 3.
    T.D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, J.L. OBrien, Nature 464, 45 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    D.G. Cory, A.F. Fahmy, T.F. Havel, Proc. Natl. Acad. Sci. 94, 1634 (1997)ADSCrossRefGoogle Scholar
  5. 5.
    D.G. Cory, M.D. Price, T.F. Havel, Physica D 120, 82 (1998)ADSCrossRefGoogle Scholar
  6. 6.
    D. Cory, R. Laflamme, E. Knill, L. Viola, T. Havel, N. Boulant, G. Boutis, E. Fortunato, S. Lloyd, R. Martinez, C. Negrevergne, M. Pravia, Y. Sharf, G. Teklemariam, Y. Weinstein, W. Zurek, Fortschr. Phys. 48, 875 (2000)CrossRefGoogle Scholar
  7. 7.
    T. Maly, G.T. Debelouchina, V.S. Bajaj, K.N. Hu, C.G. Joo, M.L. MakJurkauskas, J.R. Sirigiri, P.C.A. van der Wel, J. Herzfeld, R.J. Temkin, R.G. Griffin, J. Chem. Phys. 128, 052211 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    J. Wrachtrup, A. Gruber, L. Fleury, C. Von Borczyskowski, Chem. Phys. Lett. 267, 179 (1997)ADSCrossRefGoogle Scholar
  9. 9.
    G. Toth, I. Apellaniz, J. Phys. A 47, 424006 (2014)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    P. Cappellaro, J. Emerson, N. Boulant, C. Ramanathan, S. Lloyd, D.G. Cory, Phys. Rev. Lett. 94, 020502 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    S. Knysh, E.H. Chen, G.A. Durkin, True limits to precision via unique quantum probe, arXiv:1402.0495Google Scholar
  12. 12.
    M. Negoro, K. Tateishi, A. Kagawa, M. Kitagawa, Phys. Rev. Lett. 107, 050503 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    S. Simmons, J.A. Jones, S.D. Karlen, A. Ardavan, J.J.L. Morton, Phys. Rev. A 82, 022330 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    A. Shukla, M. Sharma, T.S. Mahesh, Chem. Phys. Lett. 592, 227 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    V.R. Pande, G. Bhole, D. Khurana, T.S. Mahesh, Phys. Rev. A 96, 012330 (2017)ADSCrossRefGoogle Scholar
  16. 16.
    D. Khurana, T. Mahesh, J. Magn. Reson. 284, 8 (2017)ADSCrossRefGoogle Scholar
  17. 17.
    S. Pal, N. Nishad, T.S. Mahesh, G.J. Sreejith, Phys. Rev. Lett. 120, 180602 (2018)ADSCrossRefGoogle Scholar
  18. 18.
    J. Koodyski, R. Demkowicz-Dobrzaski, New J. Phys. 15, 073043 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    M.H. Levitt, Spin Dynamics-Basics of NMR (John Wiley and Sons, Ltd., 2008)Google Scholar
  20. 20.
    A. Shukla, K.R.K. Rao, T.S. Mahesh, Phys. Rev. A 87, 062317 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    E.M. Fortunato, M.A. Pravia, N. Boulant, G. Teklemariam, T.F. Havel, D.G. Cory, J. Chem. Phys. 116, 7599 (2002)ADSCrossRefGoogle Scholar
  22. 22.
    J. Cavanagh, Protein NMR Spectroscopy: Principles and Practice (Academic Press, 1996)Google Scholar
  23. 23.
    W. Zhong, Z. Sun, J. Ma, X. Wang, F. Nori, Phys. Rev. A 87, 022337 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    D. Belsley, E. Kuh, R. Welsch, Regression Diagnostics: Identifying Influential Data and Sources of Collinearity, in Wiley Series in Probability and Statistics (Wiley, 2005)Google Scholar
  25. 25.
    A.H. Al-Mohy, N.J. Higham, S.D. Relton, SIAM J. Sci. Comput. 35, C394 (2013)CrossRefGoogle Scholar
  26. 26.
    R. Yousefjani, R. Nichols, S. Salimi, G. Adesso, Phys. Rev. A 95, 062307 (2017)ADSCrossRefGoogle Scholar
  27. 27.
    X.M. Lu, J. Ma, Z. Xi, X. Wang, Phys. Rev. A 83, 012327 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    K. Modi, A. Brodutch, H. Cable, T. Paterek, V. Vedral, Rev. Mod. Phys. 84, 1655 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    H. Katiyar, S.S. Roy, T.S. Mahesh, A. Patel, Phys. Rev. A 86, 012309 (2012)ADSCrossRefGoogle Scholar
  30. 30.
    S. Kim, L. Li, A. Kumar, J. Wu, Phys. Rev. A 97, 032326 (2018)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    Z. Huang, C. Macchiavello, L. Maccone, Phys. Rev. A 94, 012101 (2016)ADSCrossRefGoogle Scholar
  32. 32.
    B.R. Frieden, Physics from Fisher Information (Cambridge University Press, 1999)Google Scholar
  33. 33.
    R.R. Ernst, G. Bodenhausen, A. Wokaun, Principles of Nuclear Magnetic Resonance in One and Two Dimensions (Oxford Science Publications, 2004)Google Scholar
  34. 34.
    S. Ragy, M. Jarzyna, R. Demkowicz-Dobrzański, Phys. Rev. A 94, 052108 (2016)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics and NMR Research CenterIndian Institute of Science Education and ResearchPuneIndia
  2. 2.Department of Physics and NMR Research Center, Center for Energy SciencesIndian Institute of Science Education and ResearchPuneIndia

Personalised recommendations