Skip to main content
Log in

Time-fractional Schrödinger equation from path integral and its implications in quantum dots and semiconductors

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

A new fractional Schrödinger equation is constructed from path integral based on the notions of fractional velocity recently introduced in literature and the concept of fractional actionlike variational approach motivated from fractal arguments. The new equation is characterized by an emergent position-dependent mass and a time-dependent effective potential where both have important implications in semiconductors and molecular physics. Based on this equation, the problem of the quantum particle in a box is analyzed where the consequent outcomes are applied to semiconductors. It was observed that quantum size effects in nanostructures are significant and enhancement in the ground energy state for specific values of the fractional parameter is obtained. The fractional density of states for the case of bulk materials with no confinement is derived and it was revealed that a significant number of available states may be occupied even for lengths of the order of picometers. Additional results were obtained and discussed accordingly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Laskin, Phys. Rev. E 66, 056108 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  2. N. Laskin, Phys. Lett. A 268, 298 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  3. M. Zubair, Fractional Diffusion Equations & Anomalous Diffusion (Taylor & Francis, 2018)

  4. G. Calcagni, G. Nardelli, M. Scalisi, J. Math. Phys. 53, 102110 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  5. M.M.I. Nayga, J.P.H. Esguerra, Int. J. Mod. Phys.: Conf. Ser. 36, 1560015 (2015)

    Google Scholar 

  6. H. Kleinert, EPL 100, 10001 (2012)

    Article  ADS  Google Scholar 

  7. M. Zubair, M.J. Mughal, Q.A. Naqvi, J. Electromagn. Res. Appl. 25, 1481 (2011)

    Google Scholar 

  8. M.M.I. Nayga, J.P.H. Esguerra, Int. J. Mod. Phys.: Conf. Ser. 36, 1560015 (2015)

    Google Scholar 

  9. Y. Zhang, X. Liu, M.R. Belic, W. Zhong, Y. Zhang, M. Xiao, Phys. Rev. Lett. 115, 180403 (2015)

    Article  ADS  Google Scholar 

  10. S. Longhi, Opt. Lett. 40, 1117 (2015)

    Article  ADS  Google Scholar 

  11. A. Liemert, A. Kienle, Mathematics 4, 31 (2016)

    Article  Google Scholar 

  12. A. Tofighi, Acta Phys. Pol. A 116, 114 (2009)

    Article  ADS  Google Scholar 

  13. M. Zubair, M.J. Mughal, Q.A. Naqvi, Prog. Electromagn. Res. Lett. 19, 137 (2010)

    Article  Google Scholar 

  14. Y. Luchko, J. Math. Phys. 54, 012111 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  15. B. Al-Saqabi, L. Boyadjiev, Y. Luchko, Eur. Phys. J. ST 2013, 1779 (2013)

    Article  Google Scholar 

  16. J.L.A. Dubbeldam, Z. Tomovski, T. Sandev, Fract. Calc. Appl. Anal. 18, 1179 (2015)

    Article  MathSciNet  Google Scholar 

  17. M.S. Miller, B. Ross, An Introduction to the Fractional Integrals and Derivatives-Theory and Application (Wiley, New York, 1993)

  18. I. Podlubny, Fractional Differential Equations (Academic, New York, 1999)

  19. R. Herrmann, Fractional Calculus: An Introduction for Physicists (World Scientific Publishing Company, 2011)

  20. R. Hilfer, Applications of Fractional Calculus in Physics (World Scientific Publishing, River Edge, NJ, USA, 2000)

  21. B.J. West, M. Bologna, P. Grigolini, Physics of Fractal Operators (Institute for Nonlinear Science, Springer, New York, NY, USA, 2003)

  22. R.L. Magin, Fractional Calculus in Bioengineering (Begell House, Redding, Conn, USA, 2006)

  23. M. Naber, J. Math. Phys. 45, 3339 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  24. X.Y. Jiang, Eur. Phys. J. ST 193, 61 (2011)

    Article  Google Scholar 

  25. A. Iomin, Phys. Rev. E 80, 022103 (2009)

    Article  ADS  Google Scholar 

  26. A. Iomin, Chaos, Solitons Fractals 44, 348 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  27. Z. Odibat, S. Momani, A. Alawneh, J. Phys.: Conf. Ser. 96, 012066 (2008)

    Google Scholar 

  28. B. Hicdurmaz, A. Ashyralyev, Numer. Funct. Anal. Optim. 38, 1215 (2017)

    Article  MathSciNet  Google Scholar 

  29. P. Gorka, H. Prado, J. Trujillo, Integral Equ. Operator Theor. 87, 1 (2017)

    Article  Google Scholar 

  30. B.N. Narahari Achar, B.T. Yale, J.W. Hanneken, Adv. Math. Phys. 2013, ID290216 (2013)

    Google Scholar 

  31. M. Caputo, M. Fabrizio, Prog. Fract. Differ. Appl. 1, 73 (2015)

    Google Scholar 

  32. J. Losada, J.J. Nieto, Prog. Fract. Differ. Appl. 1, 87 (2015)

    Google Scholar 

  33. A. Atangana, Appl. Math. Comput. 273, 948 (2016)

    MathSciNet  Google Scholar 

  34. U.N. Katugampola, Bull. Math. Anal. Appl. 6, 1 (2014)

    MathSciNet  Google Scholar 

  35. A. Atangana, D. Baleanu, Therm. Sci. 20, 757 (2016)

    Article  Google Scholar 

  36. D. Prodanov, J. Phys.: Conf. Ser. 701, 012031 (2016)

    Google Scholar 

  37. D. Prodanov, Fract. Calc. Appl. Anal. 19, 173 (2016)

    Article  MathSciNet  Google Scholar 

  38. D. Prodanov, Chaos, Solitons Fractals 102, 236 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  39. D. Prodanov, Fractals Fract. 2, 1 (2018)

    Google Scholar 

  40. A. Karci, Univ. J. Eng. Sci. 1, 110 (2013)

    Google Scholar 

  41. A. Karci, Univ. J. Eng. Sci. 3, 53 (2015)

    Google Scholar 

  42. R.P. Feynman, R.B. Leighton, M. Sands, The Feynman Lectures On Physics, Vol. III (Addison-Wesley, Reading, MA, 1965)

  43. R.P. Feynman, A.R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, 1965)

  44. R.A. El-Nabulsi, D.F.M. Torres, J. Math. Phys. 49, 053521 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  45. R.A. El-Nabulsi, Anal. Theor. Appl. 30, 1 (2014)

    Article  Google Scholar 

  46. A.B. Malinowska, D.F.M. Torres, Introduction to the Fractional Calculus of Variations (Imperial College Press, London, UK, 2012)

  47. G. Calcagni, Adv. Theor. Math. Phys. 16, 549 (2012)

    Article  MathSciNet  Google Scholar 

  48. G. Calcagni, Phys. Rev. Lett. 104, 251301 (2010)

    Article  ADS  Google Scholar 

  49. V.A. Diaz, A. Giusti, J. Math. Phys. 59, 033509 (2017)

    ADS  Google Scholar 

  50. R.A. El-Nabulsi, J. Stat. Phys. 172, 1617 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  51. R.P. Feynman, Rev. Mod. Phys. 20, 367 (1948)

    Article  ADS  Google Scholar 

  52. R.P. Feynman, R.P. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965)

  53. G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructure (Les Editions de Physique, Les Ulis, France, 1988)

  54. D.L. Smith, C. Mailhiot, Rev. Mod. Phys. 62, 173 (1990)

    Article  ADS  Google Scholar 

  55. G.T. Einevoll, Phys. Rev. B 42, 3497 (1990)

    Article  ADS  Google Scholar 

  56. R.A. Morrow, Phys. Rev. B 35, 8074 (1987)

    Article  ADS  Google Scholar 

  57. P. Harrison, Quantum Wells, Wires and Dots (Wiley and Sons, New York, 2000)

  58. F.Q. Zhao, X.X. Liang, S.L. Ban, Eur. Phys. J. B 33, 3 (2003)

    Article  ADS  Google Scholar 

  59. A. de Saavedra, F. Boronat, A. Polls, A. Fabrocini, Phys. Rev. B 50, 4248 (1994)

    Article  ADS  Google Scholar 

  60. R. Renan, M.H. Pacheco, C.A.S. Almeida, J. Phys. A 33, L509 (2000)

    Article  ADS  Google Scholar 

  61. H. Rajbongshi, India J. Phys. 92, 357 (2018)

    Article  ADS  Google Scholar 

  62. N. Amir, S. Iqbal, Commun. Theor. Phys. 62, 790 (2014)

    Article  Google Scholar 

  63. S. Meyur, S. Maji, S. Debnath, Adv. High Energy Phys. 2014, 952597 (2014)

    Article  Google Scholar 

  64. S.-H. Dong, M. Lozada-Cassou, Phys. Lett. A 337, 313 (2005)

    Article  ADS  Google Scholar 

  65. A.P. Zhang, P. Shi, Y.W. Ling, Z.W. Hua, Acta Phys. Pol. A 120, 987 (2011)

    Article  Google Scholar 

  66. G.-Y. Long, S.-J. Qin, Z.-H. Yang, G.-J. Guo, Int. J. Theor. Phys. 48, 981 (2009)

    Article  ADS  Google Scholar 

  67. A. Iserles, K. Kropielnicka, P. Singh, On the discretization of the semiclassical Schrödinger equation with time-dependent potential, Technical Report NA2015/02 (2015)

  68. V.V. Dodonov, V.I. Man’ko, D.E. Nikonov, Phys. Lett. A 162, 359 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  69. J. Campbell, J. Phys. A 42, 365212 (2009)

    Article  MathSciNet  Google Scholar 

  70. V. Gurarie, Quantum Field Theory, Lectures given at the University of Colorado (Boulder, Fall 2015)

  71. P. Harrison, Quantum Wells, Wires and Dots: Theoretical And Computational Physics of Semiconductor Nanostructures (Wiley-Interscience, 2005)

  72. O. Manasreh, Semiconductor Heterojunctions and Nanostructures (Nanoscience & Technology) (McGraw-Hill, New York, 2005)

  73. P. Yu, M. Cardona, Fundamentals of Semiconductors: Physics and Materials Properties (Springer, 2005) sect. 2.6

  74. I. Filikhin, S.G. Matinyan, B. Vlahovic, Quantum Mechanics of Semiconductor Quantum Dots and Rings, Fingerprints in the Optical and Transport Properties of Quantum Dots (Ameenah Al-Ahmadi, IntechOpen, 2012) https://doi.org/10.5772/35660, available from: https://doi.org/intechopen.com/books/fingerprints-in-the-optical-and-transport-properties-of-quantum-dots/quantum-mechanics-of-semiconductor-quantum-dots-andrings

  75. G.W. Bryant, Phys. Rev. Lett. 59, 1140 (1987)

    Article  ADS  Google Scholar 

  76. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover Publications, 1983) pp. 355, 435

  77. L. Jahan, A. Boda, A. Chatterjee, AIP Conf. Proc. 1661, 080008 (2015)

    Article  Google Scholar 

  78. L. Shi, Z. Yan, J. Appl. Phys. 114, 194301 (2013)

    Article  ADS  Google Scholar 

  79. J.J. Davies, The Physics of Low-Dimensional Semiconductors: An Introduction, 6th edition (Cambridge University Press, Cambridge, 2006)

  80. E. Reyes-Gomez, L.E. Oliveira, J. Appl. Phys. 85, 4045 (1999)

    Article  ADS  Google Scholar 

  81. E. Reyes-Gomez, A. Matos-Abiague, M. de Dios-Leyva, L.E. Oliveira, Phys. Status Solidi B 220, 71 (2000)

    Article  ADS  Google Scholar 

  82. R.T. Sibatov, V.V. Uchaikin, Semiconductors 41, 335 (2007)

    Article  ADS  Google Scholar 

  83. R.T. Sibatov, V.V. Uchaikin, Phys.-Usp. 52, 1019 (2009)

    Article  ADS  Google Scholar 

  84. V.V. Uchaikin, R.T. Sibatov, Fractional Kinetics in Solids: Anomalous Charge Transport in Semiconductors, Dielectrics and Nanosystems (World Scientific, Singapore, 2013)

  85. K.Y. Choo, S.V. Muniandy, Int. J. Mod. Phys.: Conf. Ser. 36, 1560008 (2015)

    Google Scholar 

  86. K.Y. Choo, S.V. Muniandy, K.L. Woon, M.T. Gan, D.S. Ong, Org. Electron. 41, 157 (2017)

    Article  Google Scholar 

  87. J.A.K. Suykens, Phys. Lett. A 373, 1201 (2009)

    Article  ADS  Google Scholar 

  88. Z.-Y. Li, J.-L. Fu, L.-Q. Chen, Phys. Lett. A 374, 106 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  89. T.F. Kamalov, J. Phys. Conf. Ser. 442, 012051 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rami Ahmad El-Nabulsi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Nabulsi, R.A. Time-fractional Schrödinger equation from path integral and its implications in quantum dots and semiconductors. Eur. Phys. J. Plus 133, 394 (2018). https://doi.org/10.1140/epjp/i2018-12254-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2018-12254-0

Navigation