Skip to main content
Log in

Lewis and Riesenfeld approach to time-dependent non-Hermitian Hamiltonians having \(\mathcal{PT}\)symmetry

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

We discuss the extension of the Lewis and Riesenfeld invariant method to cases where the quantum systems are modulated by time-dependent non-Hermitian Hamiltonians having \(\mathcal{PT}\) symmetry. As an explicit example of this extension, we study the quantum motion of a particle submitted to action of a complex time-dependent linear potential with \(\mathcal{PT}\) symmetry. We solve the time-dependent Schrödinger equation for this problem and construct a Gaussian wave packet solution. Afterwards, we use this Gaussian packet to calculate the expectation values of the position and the momentum and the uncertainty product. We find that these expectation values are complex numbers and consequently the position and momentum operators are not observables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Greiner, Quantum Mechanics: An Introduction, Fourth Edition (Springer, Berlin, 2001)

  2. L.D. Landau, E.M. Lifshitz, Quantum Mechanics, the Nonrelativistic Theory, 3rd Ed. (Pergamon, Oxford, 1977)

  3. D.J. Griffiths, Introduction to Quantum Mechanics, 2nd ed. (Prentice Hall, Upper Saddle River, NJ, 2004)

  4. C.M. Bender, Am. J. Phys. 71, 1095 (2003)

    Article  ADS  Google Scholar 

  5. B. Khantoul, A. Bounames, M. Maamache, Eur. Phys. J. Plus 132, 258 (2017)

    Article  Google Scholar 

  6. B. Bagchi, C. Quesne, M. Znojil, Mod. Phys. Lett. A 16, 2047 (2001)

    Article  ADS  Google Scholar 

  7. S. Weigert, Phys. Rev. A 68, 062111 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  8. A. Mostafazadeh, J. Phys. A 36, 7081 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  9. C. Yuce, Phys. Lett. A 336, 290 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  10. C. Yuce, arXiv:quant-ph/0703235v1 (2007)

  11. C.M. Bender, Rep. Prog. Phys. 70, 947 (2007)

    Article  ADS  Google Scholar 

  12. R. El-Ganainy, K.G. Makris, M. Khajavikhan, Z.H. Musslimani, S. Rotter, D.N. Christodoulides, Nat. Phys. 14, 11 (2018)

    Article  Google Scholar 

  13. C.M. Bender, S. Boettcher, Phys. Rev. Lett. 80, 5234 (1998)

    Article  ADS  Google Scholar 

  14. B. Midya, Phys. Rev. A 89, 032116 (2014)

    Article  ADS  Google Scholar 

  15. Z. Zhang et al., J. Phys. B 51, 072001 (2018)

    Article  ADS  Google Scholar 

  16. J. da Providência, N. Bebiano, J.P. da Providência, Braz. J. Phys. 41, 78 (2011)

    Article  Google Scholar 

  17. A. de Sousa Dutra, M.B. Hott, V.G.C.S. dos Santos, Europhys. Lett. 71, 166 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  18. H.R. Lewis, Jr., Phys. Rev. Lett. 18, 510 (1967)

    Article  ADS  Google Scholar 

  19. H.R. Lewis, Jr., W.B. Riesenfeld, J. Math. Phys. 10, 1458 (1969)

    Article  ADS  Google Scholar 

  20. A.R.P. Rau, K. Unnikrishnan, Phys. lett. A 222, 304 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  21. I. Guedes, Phys. Rev. A 63, 034102 (2001)

    Article  ADS  Google Scholar 

  22. H. Bekkar, F. Benamira, M. Maamache, Phys. Rev. A 68, 016101 (2003)

    Article  ADS  Google Scholar 

  23. P.-G. Luan, C.-S. Tang, Phys. Rev. A 71, 014101 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  24. J.R. Choi, M. Maamache, Y. Saadi, K.H. Yeon, J. Korean Phys. Soc. 56, 1063 (2010)

    Article  Google Scholar 

  25. M. Feng, Phys. Rev. A 64, 034101 (2001)

    Article  ADS  Google Scholar 

  26. A.L. de Lima, A. Rosas, I.A. Pedrosa, Ann. Phys. 323, 2253 (2008)

    Article  ADS  Google Scholar 

  27. R. Vaidyanatthan, J. Math. Phys. 23, 1346 (1982)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Pedrosa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramos, B.F., Pedrosa, I.A. & Lopes de Lima, A. Lewis and Riesenfeld approach to time-dependent non-Hermitian Hamiltonians having \(\mathcal{PT}\)symmetry. Eur. Phys. J. Plus 133, 449 (2018). https://doi.org/10.1140/epjp/i2018-12251-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2018-12251-3

Navigation