Skip to main content

Multi-analytical and non-invasive characterization of the polychromy of wall paintings at the Domus of Octavius Quartio in Pompeii

Abstract.

The materials and techniques of wall paintings decorating the Domus of Octavius Quartio, an outstanding patrician villa in ancient Pompeii, were investigated by means of a multi-analytical and non-invasive approach. Chemical and mineralogical characterization of pigments was obtained by the combined use of external reflection Fourier Transform infrared spectroscopy (ER-FTIR), sequentially shifted excitation Raman spectroscopy (SSR-RS) and portable X-ray fluorescence (XRF) spectroscopy. ER-FTIR and SSR-RS provided complementary molecular information for the characterization of both organic and inorganic pigments and helped to identify the pigments in the white, red, yellow, black, blue and pink paints. XRF spectroscopy provided elemental characterization of the inorganic pigments and assisted in the determination of pigment mixtures mainly constituting the green paints. Results pointed to the use of a characteristic Roman palette, consisting of calcite, cinnabar, red and yellow ochre, green earths, Egyptian blue and carbon black. A fresco application of the pigments was suggested for the execution of the wall paintings. The combined approach by spectroscopic techniques also recognized that wax had been applied as a consolidant or protective coating, and weathering products in the form of gypsum and calcium oxalate also occur.

This is a preview of subscription content, access via your institution.

References

  1. M.R. Derrick, D. Stulik, J.M. Landry, Infrared spectroscopy in conservation science (Getty Conservation Institute, Los Angeles, 2000)

  2. G.D. Smith, R.J.H. Clark, J. Archaeol. Sci. 31, 1137 (2004)

    Article  Google Scholar 

  3. S. Caruso, in Proceedings of the 2nd Residential Summer School: Chemistry and Conservation Science, Roma, 2008, edited by A. Varella, E. Caponetti (Società Chimica Italiana, Rome, 2009)

  4. C. Miliani et al., Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 73, 587 (2009)

    ADS  Article  Google Scholar 

  5. S. Akyuz et al., Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 89, 74 (2012)

    ADS  Article  Google Scholar 

  6. M.J. Nuevo et al., Microchem. J. 124, 675 (2016)

    Article  Google Scholar 

  7. Q.G. Zeng et al., Microchem. J. 96, 330 (2010)

    Article  Google Scholar 

  8. V. Crupi et al., Appl. Surf. Sci. 349, 924 (2015)

    Article  Google Scholar 

  9. M. Sawczak et al., Appl. Surf. Sci. 255, 5542 (2009)

    ADS  Article  Google Scholar 

  10. A. Vila, S.A. Centeno, Microchem. J. 106, 255 (2013)

    Article  Google Scholar 

  11. C. Germinario et al., Measurement 114, 515 (2018)

    Article  Google Scholar 

  12. I. Liritzis, N. Zacharias, X-Ray Fluorescence Spectrometry (XRF) in Geoarchaeology, edited by M.S. Shackley (Springer, New York, 2011)

  13. M.S. Shackley, SAA Archaeol. Rec. 10, 17 (2010)

    Google Scholar 

  14. E. Caponetti, in YOCOCU 2014. Professional’s Experiences in Conservation of Cultural Heritage in America, Europe, Asia, edited by P.F. Macchia (Cambridge Scholars Publishing, Cambridge, 2016)

  15. K. Trentelman et al., X-Ray Spectrom. 39, 159 (2010)

    ADS  Article  Google Scholar 

  16. M. Ferretti, Radiation in Art and Archaeometry, edited by D.C. Creagh, D.A. Bradley (Elsevier, Amsterdam, 2000)

  17. C. Ricci et al., Talanta. 69, 1221 (2006)

    Article  Google Scholar 

  18. W. Vetter, M. Schreiner, E-Preservation Sci. 8, 10 (2011)

    Google Scholar 

  19. C. Miliani et al., Appl. Phys. A Mater. Sci. Process. 106, 295 (2012)

    ADS  Article  Google Scholar 

  20. C. Zaffino et al., Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 136, 1076 (2015)

    ADS  Article  Google Scholar 

  21. C. Miliani et al., Acc. Chem. Res. 43, 728 (2010)

    Article  Google Scholar 

  22. P. Vandenabeele, H.G.M. Edwards, L. Moens, Chem. Rev. 107, 675 (2007)

    Article  Google Scholar 

  23. D. Lauwers et al., Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 118, 294 (2014)

    ADS  Article  Google Scholar 

  24. F. Casadio, C. Daher, L. Bellot-Gurlet, Top. Curr. Chem. 374, 62 (2016)

    Article  Google Scholar 

  25. D. Bersani et al., Anal. Methods 8, 8395 (2016)

    Article  Google Scholar 

  26. M. de Vos Raaijmakers, Pompei. Pitture e Mosaico III, edited by I. Baldassarre (Istituto dell’Enciclopedia Italiana Treccani, Rome, 1991)

  27. I. Bragantini, Pompei. Pitture e Mosaico III, edited by I. Baldassarre (Istituto dell’Enciclopedia Italiana Treccani, Rome, 1991)

  28. Vitruvius, The Ten Books on Architecture, edited by N.H. Morgan (Dover Publications, New York, 1960)

  29. Pliny the Elder, Natural History in Ten Volumes, edited by H. Rackham (Loeb Classical Library, Cambridge, 1968)

  30. C. Grifa et al., J. Conserv. Sci. 7, 885 (2016)

    Google Scholar 

  31. R. Piovesan, J. Archaeol. Sci. 38, 2633 (2011)

    Article  Google Scholar 

  32. D. Miriello et al., J. Archaeol. Sci. 37, 2207 (2010)

    Article  Google Scholar 

  33. J.M. Madariaga et al., Appl. Spectrosc. 70, 137 (2016)

    ADS  Article  Google Scholar 

  34. J.M. Madariaga et al., J. Raman Spectrosc. 45, 1059 (2014)

    ADS  Article  Google Scholar 

  35. I. Marcaida et al., Anal. Bioanal. Chem. 409, 3853 (2017)

    Article  Google Scholar 

  36. M. Maguregui et al., Anal. Chem. 83, 3319 (2011)

    Article  Google Scholar 

  37. M. Maguregui et al., Anal. Methods 6, 372 (2014)

    Article  Google Scholar 

  38. A. Giakoumaki, M. Maguregui, I. Martínez-Arkarazo, Coalit. CSIC Electron. Newslett. 23, 6 (2012)

    Google Scholar 

  39. M.C. Pérez, Mater. Constr. 63, 449 (2013)

    Article  Google Scholar 

  40. A. Casoli, S. Santoro, Chem. Cent. J. 6, 107 (2012)

    Article  Google Scholar 

  41. R. Santacroce et al., J. Volcanol. Geotherm. Res. 177, 1 (2008)

    ADS  Article  Google Scholar 

  42. V. Spinazzola, Pompei alla luce degli scavi nuovi di Via dell’Abbondanza (Anni 1910-1923) (Libreria dello Stato, Roma, 1953)

  43. C. Conti et al., Analyst 141, 4599 (2016)

    ADS  Article  Google Scholar 

  44. M. Vagnini et al., Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 176, 174 (2017)

    ADS  Article  Google Scholar 

  45. F. Izzo et al., Constr. Build. Mater. 117, 129 (2016)

    Article  Google Scholar 

  46. S. Gunasekaran, G. Anbalagan, S. Pandi, J. Raman Spectrosc. 37, 892 (2006)

    ADS  Article  Google Scholar 

  47. M.L. Frezzotti, F. Tecce, A. Casagli, J. Geochem. Explor. 112, 1 (2012)

    Article  Google Scholar 

  48. M. Mercurio et al., Rend. Online Soc. Geol. Ital. 42, 115 (2017)

    Google Scholar 

  49. N. Eastaugh, Pigment Compendium: A Dictionary and Optical Microscopy of Historic Pigments (Butterworth-Heinemann, London, 2008)

  50. D. Bikiaris et al., Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 56, 3 (2000)

    ADS  Article  Google Scholar 

  51. U.B. Mioč et al., J. Raman Spectrosc. 35, 843 (2004)

    ADS  Article  Google Scholar 

  52. M. Radepont et al., J. Anal. At. Spectrom. 30, 599 (2015)

    Article  Google Scholar 

  53. M.K. Neiman, M. Balonis, I. Kakoulli, Appl. Phys. A. 121, 915 (2015)

    ADS  Article  Google Scholar 

  54. M.C. Edreira et al., Talanta 59, 1117 (2003)

    Article  Google Scholar 

  55. M. Cotte et al., Anal. Chem. 78, 7484 (2006)

    Article  Google Scholar 

  56. I. Kakoulli, Rev. Conserv. 3, 56 (2002)

    Google Scholar 

  57. I. Aliatis et al., J. Raman Spectrosc. 41, 1537 (2010)

    ADS  Article  Google Scholar 

  58. E.P. Tomasini et al., J. Raman Spectrosc. 43, 1671 (2012)

    ADS  Article  Google Scholar 

  59. G.F. De Simone et al., Riv. Stud. Pompei. 22, 61 (2011)

    Google Scholar 

  60. C. Grifa et al., J. Am. Ceram. Soc. 99, 3467 (2016)

    Article  Google Scholar 

  61. M.K. Donais et al., Anal. Methods 3, 1061 (2011)

    Article  Google Scholar 

  62. F. Ospitali et al., J. Raman Spectrosc. 39, 1066 (2008)

    ADS  Article  Google Scholar 

  63. M.D. Lane, Am. Mineral. 92, 1 (2007)

    ADS  Article  Google Scholar 

  64. M. de’Gennaro et al., J. Cult. Herit. 1, 399 (2000)

    Article  Google Scholar 

  65. G. Cultrone et al., Environ. Geol. 56, 741 (2008)

    ADS  Article  Google Scholar 

  66. S. Sikka, Stone consolidation in cultural heritage: research and practice, in Proceedings of the International Symposium, edited by J. Delgado Rodrigues, J.M. Mimoso Lisbon (Labóratorio Nacional de Engenharia Civil, Lisbon, 2008)

  67. M.F. La Russa et al., Int. J. Spectrosc. 2009, 893528 (2009)

    Article  Google Scholar 

  68. M. Franzini, C. Gratziu, E. Wicks, Soc. It. Mineral. Petrogr. 39, 59 (1984)

    Google Scholar 

  69. E.P. Vicenzi et al., J. Res. Natl. Inst. Stand. Technol. 107, 719 (2002)

    Article  Google Scholar 

  70. M.T. Doménech-Carbó et al., Appl. Spectrosc. 55, 1590 (2001)

    ADS  Article  Google Scholar 

  71. I. Holclajtner-Antunović et al., Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 156, 78 (2016)

    ADS  Article  Google Scholar 

  72. C. Duce et al., J. Anal. Appl. Pyrolysis. 111, 254 (2015)

    Article  Google Scholar 

  73. R. Buchwald, M.D. Breed, A.R. Greenberg, J. Exp. Biol. 211, 121 (2008)

    Article  Google Scholar 

  74. R. Cioni et al., J. Geophys. Res. Solid Earth 109, B02207 (2004)

    ADS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Celestino Grifa.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Germinario, C., Francesco, I., Mercurio, M. et al. Multi-analytical and non-invasive characterization of the polychromy of wall paintings at the Domus of Octavius Quartio in Pompeii. Eur. Phys. J. Plus 133, 359 (2018). https://doi.org/10.1140/epjp/i2018-12224-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2018-12224-6