Skip to main content
Log in

Natural convection through spherical particles of a micropolar fluid enclosed in a trapezoidal porous container

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

The present study discovers the numerical simulations of MHD non-isothermal flow of a micropolar fluid in a porous trapezoidal container under the impact of a constantly heated bottom wall. The top wall of the container is insulated while inclined boundaries have low temperature as compared to the lower boundary. The eminent numerical scheme (FEM) is employed to simulate the nonlinear field equations of the present study. The results are presented in term of streamlines, temperature contours, local and average Nusselt number for diverse values of involved physical parameters. The numerical algorithm is verified against the previously published numerical results. It is observed that the average Nusselt number diminishes with increasing the strength of the applied magnetic field. In contrast, the average Nusselt number increases slightly with enhancing the micro-gyration parameter. The analysis of the present study can be useful in solar engineering for the construction of trapezoidal solar collectors, porous heat exchangers, construction of thermal insulation structures, and geophysical fluid mechanics. The strength of stream function decreases and heat transfer phenomenon inside the cavity becomes conduction dominated with increasing the micropolar parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Basak, S. Roy, A.R. Balakrishnan, Int. J. Heat Mass Transfer 49, 4525 (2006)

    Article  Google Scholar 

  2. T. Basak, S. Roy, I. Pop, Int. J. Heat Mass Transfer 52, 2471 (2009)

    Article  Google Scholar 

  3. T. Basak, S. Roy, S.K. Singh, I. Pop, Int. J. Heat Mass Transfer 52, 4135 (2009)

    Article  Google Scholar 

  4. T. Basak, S. Roy, A. Singh, I. Pop, Int. J. Heat Mass Transfer 52, 70 (2009)

    Article  Google Scholar 

  5. T. Basak, S. Roy, A. Singh, B.D. Pandey, Int. J. Heat Mass Transfer 52, 4413 (2009)

    Article  Google Scholar 

  6. A.C. Eringen, Int. J. Eng. Sci. 2, 205 (1964)

    Article  Google Scholar 

  7. A.C. Eringen, J. Appl. Math. Mech. 16, 1 (1966)

    Google Scholar 

  8. A.C. Eringen, J. Math. Anal. Appl. 38, 480 (1972)

    Article  Google Scholar 

  9. G. Łukaszewicz, Micropolar Fluids: Theory and Application (Birkhäuser, Basel, 1999)

  10. A.C. Eringen, Microcontinuum Field Theories, Vols. I, II (Springer, New York, 2001)

  11. T. Ariman, M.A. Turk, N.D. Sylvester, Int. J. Eng. Sci. 11, 905 (1973)

    Article  Google Scholar 

  12. T. Ariman, M.A. Turk, N.D. Sylvester, Int. J. Eng. Sci. 12, 273 (1974)

    Article  Google Scholar 

  13. M. Turkyilmazoglu, Int. J. Heat Mass Transfer 106, 127 (2017)

    Article  Google Scholar 

  14. M. Turkyilmazoglu, Int. J. Heat Mass Transfer 72, 388 (2014)

    Article  Google Scholar 

  15. M. Turkyilmazoglu, Int. J. Non-Linear Mech. 83, 59 (2016)

    Article  ADS  Google Scholar 

  16. N.S. Gibanov, M.A. Sheremet, I. Pop, Int. J. Heat Mass Transfer 99, 831 (2016)

    Article  Google Scholar 

  17. M.A. Sheremet, I. Pop, A. Ishak, Int. J. Heat Mass Transfer 105, 610 (2017)

    Article  Google Scholar 

  18. M. Sheremet, T. Grosan, I. Pop, Int. J. Numer. Methods Heat Fluid Flow 27, 504 (2017)

    Article  Google Scholar 

  19. I.V. Miroshnichenko, M.A. Sheremet, I. Pop, Int. J. Mech. Sci. 120, 182 (2017)

    Article  Google Scholar 

  20. M. Zadravec, M. Hribersek, L. Skerget, Eng. Anal. Bound. Elem. 33, 485 (2009)

    Article  MathSciNet  Google Scholar 

  21. S.E. Ahmed, M.A. Mansour, A.K. Hussein, S. Sivasankaran, Eng. Sci. Technol. Int. J. 19, 364 (2016)

    Article  Google Scholar 

  22. T. Javed, M.A. Siddiqui, J. Mol. Liq. 249, 831 (2018)

    Article  Google Scholar 

  23. M. Nazeer, N. Ali, T. Javed, Can. J. Phys. 96, 576 (2018)

    Article  ADS  Google Scholar 

  24. N. Ali, M. Nazeer, T. Javed, M.A. Siddiqui, Heat Transf. Res. 49, 457 (2018)

    Article  Google Scholar 

  25. F.M., White, Fluid Mechanics (WCB/McGraw-Hill, Boston, MA, 1999)

  26. T. Basak, S. Roy, S.K. Singh, I. Pop, Int. J. Heat Mass Transfer 52, 4135 (2009)

    Article  Google Scholar 

  27. T. Basak, R.S. Kaluri, A.R. Balakrishnan, Numer. Heat Transf. A 59, 372 (2011)

    Article  ADS  Google Scholar 

  28. M. Nazeer, N. Ali, T. Javed, Can. J. Phys. https://doi.org/10.1139/cjp-2017-0904

  29. M. Nazeer, N. Ali, T. Javed, Int. J. Numer. Methods Heat Fluid Flow, https://doi.org/10.1108/HFF-10-2017-0424 (2018)

  30. N. Ali, F. Nazeer, M. Nazeer, Z. Naturforsch. A 73, 265 (2018)

    Article  ADS  Google Scholar 

  31. J.N. Reddy, An Introduction to the Finite Element Method (McGraw Hill, New York, 1993)

  32. N. Ali, Z. Asghar, O. Anwar Bég, M. Sajid, J. Theor. Biol. 397, 22 (2016)

    Article  Google Scholar 

  33. T. Javed, Z. Mehmood, M.A. Siddiqui, J. Braz. Soc. Mech. Sci. Eng. 39, 3897 (2017)

    Article  Google Scholar 

  34. M. Nazeer, N. Ali, T. Javed, F. Abbas, Meccanica 53, 3279 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mubbashar Nazeer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazeer, M., Ali, N., Javed, T. et al. Natural convection through spherical particles of a micropolar fluid enclosed in a trapezoidal porous container. Eur. Phys. J. Plus 133, 423 (2018). https://doi.org/10.1140/epjp/i2018-12217-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2018-12217-5

Navigation