Skip to main content
Log in

MHD free convection flow of a viscous fluid in a rotating system with damped thermal transport, Hall current and slip effects

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

Unsteady hydromagnetic free convection flows of a rotating incompressible viscous fluid over an infinite moving plate with fractional thermal transport are studied in the presence of heat source, Hall current and slip velocity effects. The modern definition of the fractional integral Caputo-Fabrizio operator with non-singular kernel is used in the constitutive equation for the thermal flux and closed form solutions for the dimensionless temperature and velocity components are established by using the Laplace transform technique. For comparison, the solutions for the ordinary fluid as well as those corresponding to the no-slip condition on the boundary are also determined. The influence of fractional, magnetic, Hall and rotation parameters as well as that of heat generation/absorption coefficient on the fluid motion and the heat transfer is graphically underlined and discussed. It is found that the damping of the thermal transport has significant influence on the fluid temperature and motion. The Hall current mainly affects the secondary flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.W. Sutton, A. Sherman, Engineering Magnetohydrodynamics (McGraw-Hill, New York, 1965)

  2. L. Debnath, S.C. Ray, A.K. Chatlerjee, Z. Angew. Math. Mech. 59, 469 (1979)

    Article  Google Scholar 

  3. H.S. Takhar, B.K. Jha, Magnetohydrodyn. Plasma Res. J. 8, 61 (1998)

    Google Scholar 

  4. H.S. Takhar, A.J. Chamkha, G. Nath, Int. J. Eng. Sci. 40, 1511 (2002)

    Article  Google Scholar 

  5. S.K. Gosh, I. Pop, Int. J. Appl. Mech. Eng. 8, 43 (2003)

    Google Scholar 

  6. S.K. Gosh, I. Pop, Int. J. Appl. Mech. Eng. 9, 293 (2004)

    Google Scholar 

  7. R.K. Deka, Theor. Appl. Mech. 35, 333 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  8. T. Hayat, Maryam Shafique, A. Tanveer, A. Alsaedi, J. Magn. & Magn. Mater. 407, 51 (2016)

    Article  ADS  Google Scholar 

  9. T. Linga Raju, V.V. Ramana Rao, Int. J. Eng. Sci. 31, 1073 (1993)

    Article  Google Scholar 

  10. P.C. Ram, A. Singh, H.S. Takhar, Magnetohydrodyn. Plasma Res. J. 5, 1 (1995)

    Google Scholar 

  11. S.K. Ghosh, O.A. Beg, M. Narahari, Meccanica 44, 741 (2009)

    Article  MathSciNet  Google Scholar 

  12. J.K. Sundarnath, R. Muthucumarswamy, Int. J. Appl. Mech. Eng. 20, 171 (2015)

    Article  Google Scholar 

  13. G.S. Seth, S.M. Hussain, S. Sarkar, Bulg. Chem. Commun. 46, 704 (2014)

    Google Scholar 

  14. G.S. Seth, S. Sarkar, S.M. Hussain, Ain Shams Eng. J. 5, 489 (2014)

    Article  Google Scholar 

  15. G.S. Seth, B. Kumbhakar, S. Sarkar, Int. J. Eng. Sci. Technol. 7, 94 (2015)

    Article  Google Scholar 

  16. G.S. Seth, R. Tripathi, R. Sharma, Bulg. Chem. Commun. 48, 770 (2016)

    Google Scholar 

  17. Q. Hussain, T. Hayat, S. Asghar, F. Alsaedi, J. Mech. Med. Biol. 16, 1650047 (2016)

    Article  Google Scholar 

  18. I.J. Rao, K.R. Rajagopal, Acta Mech. 135, 113 (1999)

    Article  MathSciNet  Google Scholar 

  19. A.R.A. Khaled, K. Vafai, Int. J. Non-Linear Mech. 39, 795 (2004)

    Article  ADS  Google Scholar 

  20. O.D. Makinde, E. Osalusi, Rom. J. Phys. 51, 319 (2006)

    Google Scholar 

  21. M.M. Hamza, B.Y. Isah, H. Usman, Int. J. Comput. Appl. 33, 12 (2011)

    Google Scholar 

  22. C. Fetecau, D. Vieru, Corina Fetecau, S. Akhter, Z. Naturforsch. 68a, 659 (2013)

    ADS  Google Scholar 

  23. C. Fetecau, D. Vieru, Corina Fetecau, I. Pop, Eur. Phys. J. Plus 130, 6 (2015)

    Article  Google Scholar 

  24. A. Sohail, Samiulhaq, D. Vieru, Eur. Phys. J. Plus 129, 28 (2014)

    Article  Google Scholar 

  25. S.U. Haq, I. Khan, F. Ali, A. Khan, T.N.A. Abdelhameed, Abstr.Appl. Anal. 2015, 327975 (2015)

    Article  Google Scholar 

  26. M.M. Hamza, Ain Shams Eng. J. (2016) https://doi.org/10.1016/j.asej.2016.08.011

  27. S. Mukhopadhyay, I.C. Mandal, Eng. Sci. Technol. Int. J. 18, 98 (2015)

    Article  Google Scholar 

  28. R.L. Bagley, P.J. Torvik, J. Rheol 27, 201 (1983)

    Article  ADS  Google Scholar 

  29. M. Caputo, F. Mainardi, Pure Appl. Geophys. 91, 134 (1971)

    Article  ADS  Google Scholar 

  30. M. Caputo F. Mainardi, Riv. Nuovo Cimento 1, 161 (1971)

    Article  Google Scholar 

  31. N. Makris, G.F. Dargush, M.C. Constantinou, Dynamic analysis of generalized viscoelastic systems with the boundary element method, in Advances in Computational Mechanics, edited by M. Papadrakakis, B.H.V. Topping (Civil-Comp Press, Edinburgh, UK, 1994) pp. 283--290

  32. S.S. Sheoran, P. Kundu, Int. J. Adv. Appl. Math. Mech. 3, 76 (2016)

    MathSciNet  Google Scholar 

  33. K.R. Cramer, S.I. Pai, Magnetofluid Dynamics for Engineers and Applied Physicists (McGraw Hill, NewYork, 1973)

  34. J. Hristov, in Frontiers in Fractional Calculus, 1st edition, edited by Sachin Bhalekar (Bentham Science Publishers 2017) chap. 10, pp. 235--295

  35. M. Caputo, M. Fabrizio, Prog. Fract. Differ. Appl. 2, 1 (2016)

    Article  Google Scholar 

  36. M. Caputo, Prog. Fract. Differ. Appl. 2, 77 (2016)

    Article  Google Scholar 

  37. J. Losada, J.J. Nieto, Prog. Fract. Differ. Appl. 1, 87 (2015)

    Google Scholar 

  38. C.J. Toki, J.N. Tokis, Z. Angew. Math. Mech. 87, 4 (2007)

    Article  Google Scholar 

  39. M. Narahari, L. Debnath, Z. Angew. Math. Mech. 93, 38 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dumitru Vieru.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali Azhar, W., Fetecau, C. & Vieru, D. MHD free convection flow of a viscous fluid in a rotating system with damped thermal transport, Hall current and slip effects. Eur. Phys. J. Plus 133, 353 (2018). https://doi.org/10.1140/epjp/i2018-12171-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2018-12171-2

Navigation