Skip to main content
Log in

Novel standoff detection system for the classification of chemical and biological hazardous substances combining temporal and spectral laser-induced fluorescence techniques

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

In an effort to reduce the potential risk of human exposure to chemical and biological hazardous materials, the demand increases for a detection system which rapidly identifies possible threats from a distance to avoid direct human contact to these materials. In this scope, we present a novel detection system which is able to measure simultaneously spectrally and temporally resolved laser-induced fluorescence (LIF) signals excited by two consecutive laser pulses with different central wavelengths at 266nm and 355nm. As is shown in this paper, the setup enables fast data acquisition that provides a complete dataset in less than a few milliseconds at repetition rates of 100Hz. Furthermore, with its modular design, it can be transported easily for operation at different locations. First measurements indicate a high performance with an accuracy of more than 97% in the distinguishability of bacterial specimen within a limited set of three representative bacterial species, namely Bacillus thuringiensis, Micrococcus luteus and Oligella urethralis. Together with the consecutive classification procedure, the setup promises to become a valuable tool for standoff detection of bio-hazards.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.D. Burrows, S.E. Renner, Environ. Health Perspect. 107, 975 (1999)

    Article  Google Scholar 

  2. D.A. Henderson, Science 283, 1279 (1999)

    Article  Google Scholar 

  3. S. Buteau, J. Ho, P. Lahaie, S. Rowsell, J.-R. Simard, J. Kadlcak, G. Sgarzi, P. Tonini, J.C. van den Heuvel, J.M. Blatny, Ø. Farsund, H.-C. Gran, S. Lovold, G. Rustad, M. Sletmoen, K. Baxter, M. Castle, E.V.J. Foot, C. Swim, R. Vanderbeek, Laser based standoff detection of biological agents (North Atlantic Treaty Organisation, Research and Technology Organisation, 2010)

  4. P. Gaudio, M. Gelfusa, A. Murari, R. Pizzoferrato, M. Carestia, O. Cenciarelli, S. Parracino, G. Ludovici, J. Gabriele, V. Gabbarini, D.D. Giovanni, R. Rossi, J.F. Ciparisse, C. Bellecci, A. Malizia, Application of optical techniques to detect chemical and biological agents, in Defence S&T Technical Bulletin (2017)

  5. F. Duschek, L. Fellner, F. Gebert, K. Grünewald, A. Köhntopp, M. Kraus, P. Mahnke, C. Pargmann, H. Tomaso, A. Walter, Adv. Opt. Technol. 6, 75 (2017)

    ADS  Google Scholar 

  6. O. Farsund, G. Rustad, G. Skogan, Biomed. Opt. Express 3, 2964 (2012)

    Article  Google Scholar 

  7. P. Jonsson, M. Elmqvist, O. Gustafsson, F. Kullander, R. Persson, G. Olofsson, T. Tjärnhage, Ø. Farsund, T.V. Haavardsholm, G. Rustad, Evaluation of biological aerosol stand-off detection at a field trial, in Optically Based Biological and Chemical Detection for Defence, edited by J.C. Carrano, C.J Collins (SPIE, 2009)

  8. R.C. Sharma, D. Kumar, S. Kumar, D. Joshi, H.B. Srivastva, IEEE Sensors J. 15, 3349 (2015)

    Article  ADS  Google Scholar 

  9. J.R. Simard, G. Roy, P. Mathieu, V. Larochelle, Standoff integrated bioaerosol active hyperspectral detection (Sindbahd): Final report (Defence R&D Canada, 2003)

  10. S. Buteau, S. Rowsell, Biological material detection identification and monitoring: Combining point and standoff sensors technologies, in Optics and Photonics for Counterterrorism, Crime Fighting, and Defence, edited by D. Burgess, G. Owen, H. Bouma, F. Carlysle-Davies, R.J. Stokes, Y. Yitzhaky (SPIE, 2016)

  11. M. Kraus, L. Fellner, F. Gebert, K. Grünewald, C. Pargmann, A. Walter, F. Duschek, Comparison of Classification Models of Spectral Data of Laser Induced Fluorescence, in 1st Scientific International Conference on CBRNe (Springer, 2017)

  12. J.R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer-Verlag New York Inc., 2006)

  13. V. Sivaprakasam, H.-B. Lin, A.L. Huston, J.D. Eversole, Opt. Express 19, 6191 (2011)

    Article  ADS  Google Scholar 

  14. A.E. Kinkennon, L.B. McGown, J. Fluoresc. 7, 201 (1997)

    Article  Google Scholar 

  15. F. Awad, C. Ramprasath, N. Mathivanan, P.R. Aruna, S. Ganesan, Biomed. Spectrosc. Imag. 3, 381 (2014)

    Google Scholar 

  16. D.R. Herriott, H.J. Schulte, Appl. Opt. 4, 883 (1965)

    Article  ADS  Google Scholar 

  17. C. Elliott, V. Vijayakumar, W. Zink, R. Hansen, J. Assoc. Lab. Autom. 12, 17 (2007)

    Article  Google Scholar 

  18. L. Fellner, F. Gebert, A. Walter, K. Grünewald, F. Duschek, Variations in fluorescence spectra of a bacterial population during different growth phases, in 1st Scientific International Conference on CBRNe (Springer, 2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Gebert.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gebert, F., Kraus, M., Fellner, L. et al. Novel standoff detection system for the classification of chemical and biological hazardous substances combining temporal and spectral laser-induced fluorescence techniques. Eur. Phys. J. Plus 133, 269 (2018). https://doi.org/10.1140/epjp/i2018-12147-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2018-12147-2

Navigation