Cosmic Microwave Background and the issue of a fundamental preferred frame

Abstract.

The possibility to correlate ether-drift measurements in laboratory and direct CMB observations with satellites in space would definitely confirm the existence of a fundamental preferred frame for relativity. Today, the small residuals observed so far (from Michelson-Morley onward) are just considered typical instrumental effects in experiments with better and better sensitivity. Though, if the velocity of light propagating in the various interferometers is not exactly the same parameter c of Lorentz transformations, nothing would really prevent to observe an ether drift. Thus, for the Earth cosmic velocity v = 370 km/s, we argue that a fundamental 10-15 light anisotropy, as presently observed in vacuum and in solid dielectrics, is revealing a 10-9 difference in the vacuum effective refractivity between an apparatus in an ideal freely falling frame and an apparatus on the Earth surface. In this perspective, the stochastic nature of the physical vacuum could also explain the irregular character of the signal and the observed substantial reduction from its instantaneous 10-15 value to its statistical average 10-18 (or smaller). For the same v = 370 km/s the different refractivities, respectively, \( {O}(10^{-4})\) and \( {O}(10^{-5})\) for air or helium at atmospheric pressure, could also explain the observed light anisotropy, respectively \( {O}(10^{-10})\) and \( {O}(10^{-11})\) . However, for consistency, one should also understand the physical mechanism which enhances the signal in weakly bound gaseous matter but remains ineffective in solid dielectrics where the refractivity is \( {O}(1)\) . This mechanism is naturally identified in a non-local, tiny temperature gradient of a fraction of millikelvin which is found in all classical experiments and might ultimately be related to the CMB temperature dipole of ±3 mK or reflect the fundamental energy flow associated with a Lorentz-non-invariant vacuum state. The importance of the issue would deserve more stringent tests with dedicated experiments and significant improvements in the data analysis.-1

This is a preview of subscription content, log in to check access.

References

  1. 1

    J.C. Mather, Rev. Mod. Phys. 79, 1331 (2007)

    ADS  Article  Google Scholar 

  2. 2

    G.F. Smoot, Rev. Mod. Phys. 79, 1349 (2007)

    ADS  Article  Google Scholar 

  3. 3

    M. Yoon, D. Huterer, Astrophys. J. Lett. 813, L18 (2015)

    ADS  Article  Google Scholar 

  4. 4

    G. ’t Hooft, Search of the Ultimate Building Blocks (Cambridge University Press, 1997) p. 70

  5. 5

    M. Consoli, P.M. Stevenson, Int. J. Mod. Phys. A 15, 133 (2000)

    ADS  Google Scholar 

  6. 6

    M. Consoli, Found. Phys. 45, 22 (2015)

    ADS  MathSciNet  Article  Google Scholar 

  7. 7

    R.F. Streater, A.S. Wightman, PCT, Spin and Statistics, and all that (W. A. Benjamin, New York, 1964)

  8. 8

    S. Liberati, S. Sonego, M. Visser, Ann. Phys. 298, 167 (2002)

    ADS  Article  Google Scholar 

  9. 9

    V. Scarani et al., Phys. Lett. A 276, 1 (2000)

    ADS  MathSciNet  Article  Google Scholar 

  10. 10

    L. Hardy, Phys. Rev. Lett. 68, 2981 (1992)

    ADS  MathSciNet  Article  Google Scholar 

  11. 11

    A.A. Michelson, E.W. Morley, Am. J. Sci. 34, 333 (1887)

    ADS  Article  Google Scholar 

  12. 12

    D.C. Miller, Rev. Mod. Phys. 5, 203 (1933)

    ADS  Article  Google Scholar 

  13. 13

    A.A. Michelson et al., Astrophys. J. 68, 341 (1928)

    ADS  Article  Google Scholar 

  14. 14

    K.K. Illingworth, Phys. Rev. 30, 692 (1927)

    ADS  Article  Google Scholar 

  15. 15

    G. Joos, Ann. Phys. (Leipzig) 7, 385 (1930)

    ADS  Article  Google Scholar 

  16. 16

    H. Müller et al., Appl. Phys. B 77, 719 (2003)

    ADS  Article  Google Scholar 

  17. 17

    M. Nagel et al., Nat. Commun. 6, 8174 (2015)

    Article  Google Scholar 

  18. 18

    W.M. Hicks, Philos. Mag. 3, 9 (1902)

    Article  Google Scholar 

  19. 19

    A. Brillet, J.L. Hall, Phys. Rev. Lett. 42, 549 (1979)

    ADS  Article  Google Scholar 

  20. 20

    S. Herrmann et al., Phys. Rev. D 80, 10511 (2009)

    MathSciNet  Google Scholar 

  21. 21

    Ch. Eisele, A. Newsky, S. Schiller, Phys. Rev. Lett. 103, 090401 (2009)

    ADS  Article  Google Scholar 

  22. 22

    M. Nagel, arXiv:1308.5582 [physics.optics]

  23. 23

    Q. Chen, E. Magoulakis, S. Schiller, Phys. Rev. D 93, 022003 (2016)

    ADS  Article  Google Scholar 

  24. 24

    J. Shamir, R. Fox, Nuovo Cimento B 62, 258 (1969)

    ADS  Article  Google Scholar 

  25. 25

    J.C. Maxwell, Ether, Encyclopaedia Britannica, 9th edition (1878)

  26. 26

    R.S. Shankland et al., Rev. Mod. Phys. 27, 167 (1955)

    ADS  Article  Google Scholar 

  27. 27

    G. Joos, Phys. Rev. 45, 114 (1934)

    ADS  Article  Google Scholar 

  28. 28

    M. Consoli, C. Matheson, A. Pluchino, Eur. Phys. J. Plus 128, 71 (2013) arXiv:1302.3508 [physics]

    Article  Google Scholar 

  29. 29

    M. Consoli, A. Pluchino, A. Rapisarda, S. Tudisco, Physica A 394, 61 (2014)

    ADS  Article  Google Scholar 

  30. 30

    R.P. Feynman, R.B. Leighton, M. Sands, The Feynman Lectures on Physics (Addison Wesley Publ. Co., 1963)

  31. 31

    L. Onsager, Nuovo Cimento, Suppl. 6, 279 (1949)

    MathSciNet  Article  Google Scholar 

  32. 32

    G.L. Eyink, K.R. Sreenivasan, Rev. Mod. Phys. 78, 87 (2006)

    ADS  Article  Google Scholar 

  33. 33

    E.T. Whittaker, A History of the Theories of Aether and Electricity (Dover Publications, Inc. New York, 1989)

  34. 34

    O.V. Troshkin, Physica A 168, 881 (1990)

    ADS  Article  Google Scholar 

  35. 35

    H.E. Puthoff, arXiv:0808.3401 [physics.gen-ph]

  36. 36

    T.D. Tsankov, Classical Electrodynamics and the Turbulent Aether Hypothesis, (2009) unpublished

  37. 37

    L.A. Saul, Phys. Lett. A 314, 472 (2003)

    ADS  MathSciNet  Article  Google Scholar 

  38. 38

    E. Nelson, Phys. Rev. 150, 1079 (1966)

    ADS  Article  Google Scholar 

  39. 39

    P. Jizba, H. Kleinert, Phys. Rev. D 82, 085016 (2010)

    ADS  Article  Google Scholar 

  40. 40

    P. Jizba, F. Scardigli, arXiV:1301.4091v2 [hep-th]

  41. 41

    H. Müller, Phys. Rev. D 71, 045004 (2005)

    ADS  Article  Google Scholar 

  42. 42

    M. Consoli, L. Pappalardo, Gen. Relativ. Gravit. 42, 2585 (2010)

    ADS  Article  Google Scholar 

  43. 43

    V. Guerra, R. de Abreu, Eur. J. Phys. 26, S117 (2005)

    Article  Google Scholar 

  44. 44

    U. Leonhardt, P. Piwnicki, Phys. Rev. A 60, 4301 (1999)

    ADS  Article  Google Scholar 

  45. 45

    J.M. Jauch, K.M. Watson, Phys. Rev. 74, 950 (1948)

    ADS  Article  Google Scholar 

  46. 46

    R.J. Kennedy, Phys. Rev. 47, 965 (1935)

    ADS  Article  Google Scholar 

  47. 47

    J.J. Nassau, P.M. Morse, Astrophys. J. 65, 73 (1927)

    ADS  Article  Google Scholar 

  48. 48

    L.D. Landau, E.M. Lifshitz, Fluid Mechanics (Pergamon Press, 1959) chapt. III

  49. 49

    J.C.H. Fung et al., J. Fluid Mech. 236, 281 (1992)

    ADS  MathSciNet  Article  Google Scholar 

  50. 50

    A.N. Kolmogorov, Dokl. Akad. Nauk SSSR 30, 4 (1940) English translation in Proc. R. Soc. A 434

    Google Scholar 

  51. 51

    R. Tomaschek, Astron. Nachr. 219, 301 (1923) English translation

    ADS  Article  Google Scholar 

  52. 52

    A. Piccard, E. Stahel, J. Phys. Le Radium IX, No.2 (1928)

  53. 53

    A.A. Michelson, F.G. Pease, F. Pearson, Nature 123, 88 (1929)

    ADS  Article  Google Scholar 

  54. 54

    A.A. Michelson, F.G. Pease, F. Pearson, J. Opt. Soc. Am. 18, 181 (1929)

    ADS  Article  Google Scholar 

  55. 55

    F.G. Pease, Publ. Astron. Soc. Pacific XLII, 197 (1930)

    ADS  Article  Google Scholar 

  56. 56

    Ch. Eisele et al., Opt. Commun. 281, 1189 (2008)

    ADS  Article  Google Scholar 

  57. 57

    J.A. Stone, A. Stejskal, Metrologia 41, 189 (2004)

    ADS  Article  Google Scholar 

  58. 58

    T.S. Jaseja et al., Phys. Rev. 133, A1221 (1964)

    Article  Google Scholar 

  59. 59

    M. Consoli, A. Pluchino, A. Rapisarda, EPL 113, 19001 (2016) arXiv:1601.06518 [astro-ph.CO]

    ADS  Article  Google Scholar 

  60. 60

    C. Barcelo, S. Liberati, M. Visser, Class. Quantum Grav. 18, 3595 (2001)

    ADS  Article  Google Scholar 

  61. 61

    M. Visser, C. Barcelo, S. Liberati, Gen. Relativ. Gravit. 34, 1719 (2002)

    Article  Google Scholar 

  62. 62

    G.E. Volovik, Phys. Rep. 351, 195 (2001)

    ADS  MathSciNet  Article  Google Scholar 

  63. 63

    R. Schützhold, Class. Quantum Grav. 25, 114027 (2008)

    ADS  MathSciNet  Article  Google Scholar 

  64. 64

    M. Consoli, Class. Quantum Grav. 26, 225008 (2009)

    ADS  MathSciNet  Article  Google Scholar 

  65. 65

    C.D. Hoyle et al., Phys. Rev. D 70, 042004 (2004)

    ADS  Article  Google Scholar 

  66. 66

    H. Yilmaz, Phys. Rev. 111, 1417 (1958)

    ADS  MathSciNet  Article  Google Scholar 

  67. 67

    B.O.J. Tupper, Nuovo Cimento B 19, 135 (1974)

    ADS  Google Scholar 

  68. 68

    B.O.J. Tupper, Lett. Nuovo Cimento 14, 627 (1974)

    Article  Google Scholar 

  69. 69

    R.P. Feynman, in Superstrings: A Theory of Everything?, edited by P.C.W. Davies, J. Brown (Cambridge University Press, 1997) p. 201

  70. 70

    R. D’E. Atkinson, Proc. R. Soc. 272, 60 (1963)

    Article  Google Scholar 

  71. 71

    K. Thorne, Black Holes and Time Warps: Einstein’s Outrageous Legacy (W. W. Norton and Co. Inc, New York and London, 1994) see chapt. 11, What is Reality?

  72. 72

    R.J. Cook, Am. J. Phys. 72, 214 (2004)

    ADS  Article  Google Scholar 

  73. 73

    A.S. Eddington, Space, Time and Gravitation (Cambridge University Press, 1920)

  74. 74

    A.M. Volkov, A.A. Izmest’ev, G.V. Skrotski, Sov. Phys. JETP 32, 686 (1971)

    ADS  Google Scholar 

  75. 75

    L.D. Landau, E.M. Lifshitz, The Classical Theory of Fields (Pergamon Press, 1971) p. 257

  76. 76

    J. Broekaert, Found. Phys. 38, 409 (2008)

    ADS  Article  Google Scholar 

  77. 77

    D.A. Jennings et al., J. Res. Nat. Bur. Stand. 92, 11 (1987)

    Article  Google Scholar 

  78. 78

    K.R. Sreenivasan, Rev. Mod. Phys. 71, S383 (1999) centenary volume

    Article  Google Scholar 

  79. 79

    C. Beck, Phys. Rev. Lett. 98, 064502 (2007)

    ADS  Article  Google Scholar 

  80. 80

    C. Tsallis, Introduction to Nonextensive Statistical Mechanics (Springer, 2009)

  81. 81

    C. Lämmerzahl et al., Class. Quantum Grav. 18, 2499 (2001)

    ADS  Article  Google Scholar 

  82. 82

    K. Numata, A. Kemery, J. Camp, Phys. Rev. Lett. 93, 250602 (2004)

    ADS  Article  Google Scholar 

  83. 83

    M. Consoli, E. Costanzo, Eur. Phys. J. C 54, 285 (2008)

    ADS  Article  Google Scholar 

  84. 84

    M. Consoli, E. Costanzo, Eur. Phys. J. C 55, 469 (2008)

    ADS  Article  Google Scholar 

  85. 85

    Y.B. Zeldovich, Sov. Phys. Usp. 11, 381 (1968)

    ADS  Article  Google Scholar 

  86. 86

    S. Weinberg, Rev. Mod. Phys. 61, 1 (1989)

    ADS  Article  Google Scholar 

  87. 87

    G. Jannes, G.E. Volovik, JETP Lett. 96, 215 (2012)

    ADS  Article  Google Scholar 

  88. 88

    S. Finazzi, S. Liberati, L. Sindoni, Phys. Rev. Lett. 108, 071101 (2012)

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Consoli.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Consoli, M., Pluchino, A. Cosmic Microwave Background and the issue of a fundamental preferred frame. Eur. Phys. J. Plus 133, 295 (2018). https://doi.org/10.1140/epjp/i2018-12136-5

Download citation