Skip to main content

Novel connection between lump-like structures and quantum mechanics

Abstract.

This work deals with lump-like structures in models described by a single real scalar field in two-dimensional spacetime. We start with a model that supports lump-like configurations and use the deformation procedure to construct scalar field theories that support both lumps and kinks, with the corresponding stability investigation giving rise to new physical systems. Very interestingly, we find models that support stable topological solutions, with the stability potential being able to support a tower of non-negative bound states, generating distinct families of potentials of current interest to quantum mechanics. We also describe models where the lump-like solutions give rise to stability potentials that have the shape of a double well.

This is a preview of subscription content, access via your institution.

References

  1. A. Vilenkin, E.P.S. Shellard, Cosmic Strings and Other Topological Defects (Cambridge University Press, 1994)

  2. T. Vachaspati, Kinks and Domain Walls: An Introduction to Classical and Quantum Solitons (Cambridge University Press, 2006)

  3. M. Bordag, A. Yurov, Phys. Rev. D 67, 025003 (2003)

    Article  ADS  Google Scholar 

  4. T. Vachaspati, Phys. Rev. D 69, 043510 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  5. A.T. Avelar, D. Bazeia, L. Losano, R. Menezes, Eur. Phys. J. C 55, 133 (2008)

    Article  ADS  Google Scholar 

  6. A.T. Avelar, D. Bazeia, W. Cardoso, L. Losano, Phys. Lett. A 374, 222 (2009)

    Article  ADS  Google Scholar 

  7. A. Khare, I.C. Christov, A. Saxena, Phys. Rev. E 90, 023208 (2014)

    Article  ADS  Google Scholar 

  8. L. Infeld, T.E. Hull, Rev. Mod. Phys. 23, 21 (1951)

    Article  ADS  Google Scholar 

  9. F. Cooper, A. Khare, U. Sukhatme, Phys. Rep. 251, 267 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  10. G. Junker, Supersymmetric Methods in Quantum and Statistical Physics (Springer, 1996)

  11. F. Cooper, A. Khare, U. Sukhatme, Supersymmetry in Quantum Mechanics (World Scientific, 2001)

  12. D. Bazeia, F.S. Bemfica, Mod. Phys. Lett. A 32, 1750073 (2017)

    Article  ADS  Google Scholar 

  13. D. Bazeia, F.S. Bemfica, Phys. Rev. D 95, 085008 (2017)

    Article  ADS  Google Scholar 

  14. D. Bazeia, L. Losano, EPL 121, 10006 (2018)

    Article  ADS  Google Scholar 

  15. J.A. Frieman, G.B. Gelmini, M. Gleiser, E.W. Kolb, Phys. Rev. Lett. 60, 2101 (1988)

    Article  ADS  Google Scholar 

  16. A.L. MacPherson, B.A. Campbell, Phys. Lett. B 347, 205 (1995)

    Article  ADS  Google Scholar 

  17. S. Coleman, Nucl. Phys. B 262, 263 (1985)

    Article  ADS  Google Scholar 

  18. G. Dvali, A. Kusenko, M. Shaposhnikov, Phys. Lett. B 417, 99 (1998)

    Article  ADS  Google Scholar 

  19. A. Kusenko, M. Shaposhnikov, Phys. Lett. B 418, 46 (1998)

    Article  ADS  Google Scholar 

  20. T. Matsuda, Phys. Rev. D 68, 127 (2003)

    Google Scholar 

  21. D. Bazeia, M.A. Marques, R. Menezes, Eur. Phys. J. C 76, 241 (2016)

    Article  ADS  Google Scholar 

  22. R.L. Davis, E.P.S. Shellard, Nucl. Phys. B 323, 209 (1989)

    Article  ADS  Google Scholar 

  23. J. Garaud, E. Radu, M.S. Volkov, Phys. Rev. Lett. 111, 171602 (2013)

    Article  ADS  Google Scholar 

  24. M. Gleiser, Phys. Lett. B 600, 126 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  25. M. Gleiser, D. Sicilia, Phys. Rev. Lett. 101, 011602 (2008)

    Article  ADS  Google Scholar 

  26. S. Antusch, F. Cefalà, S. Orani, Phys. Rev. Lett. 118, 011303 (2017)

    Article  ADS  Google Scholar 

  27. G.P. Agrawal, Nonlinear Fiber Optics (Academic, 1995)

  28. H.A. Haus, W.S. Wong, Rev. Mod. Phys. 68, 423 (1996)

    Article  ADS  Google Scholar 

  29. Y.S. Kivshar, B. Luther-Davies, Phys. Rep. 298, 81 (1998)

    Article  ADS  Google Scholar 

  30. M. Razavy, Quantum Theory of Tunneling (World Scientific, 2013)

  31. A. Sen, J. High Energy Phys. 08, 012 (1998)

    Article  ADS  Google Scholar 

  32. A. Sen, Int. J. Mod. Phys. A 14, 4061 (1999)

    Article  ADS  Google Scholar 

  33. J.A. Minaham, B. Zwiebach, J. High Energy Phys. 09, 029 (2000)

    Article  ADS  Google Scholar 

  34. D.P. Jaktar, R. Vathsan, J. High Energy Phys. 06, 039 (2001)

    ADS  Google Scholar 

  35. M. Schnabl, Adv. Theor. Math. Phys. 10, 433 (2006)

    Article  MathSciNet  Google Scholar 

  36. T. Erler, M. Schnabl, J. High Energy Phys. 10, 066 (2009)

    Article  ADS  Google Scholar 

  37. L. Bonora, D.D. Tolla, Eur. Phys. J. C 76, 203 (2016)

    Article  ADS  Google Scholar 

  38. G. ’t Hooft, Class. Quantum Grav. 16, 3263 (1999)

    Article  ADS  Google Scholar 

  39. C.R. Galley, Phys. Rev. Lett. 110, 174301 (2013)

    Article  ADS  Google Scholar 

  40. D. Bazeia, L. Losano, J.M.C. Malbouisson, Phys. Rev. D 66, 101701(R) (2002)

    Article  ADS  Google Scholar 

  41. B. Zwiebach, JHEP 09, 028 (2000)

    Article  ADS  Google Scholar 

  42. I. Cho, A. Vilenkin, Phys. Rev. D 59, 021701(R) (1999)

    Article  ADS  Google Scholar 

  43. D. Bazeia, Phys. Rev. D 60, 067705 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  44. E. Babichev, Phys. Rev. D 74, 085004 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  45. D. Bazeia, L. Losano, R. Menezes, J.C.R.E. Oliveira, Eur. Phys. J. C 51, 953 (2007)

    Article  ADS  Google Scholar 

  46. D. Bazeia, E. da Hora, H.P. Oliveira, Phys. Rev. D 81, 125016 (2010)

    Article  ADS  Google Scholar 

  47. P.M. Morse, H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, 1953)

  48. K. Banerjee, S.P. Bhatnagar, Phys. Rev. D 18, 4767 (1978)

    Article  ADS  Google Scholar 

  49. M.F. Manning, J. Chem. Phys. 3, 136 (1935)

    Article  ADS  Google Scholar 

  50. T.D. Davis, R.E. Christoffersen, Chem. Phys. Lett. 20, 317 (1973)

    Article  ADS  Google Scholar 

  51. W.S. Benédict, E.K. Plyer, Can. J. Phys. 35, 1235 (1957)

    Article  ADS  Google Scholar 

  52. D. Bazeia, E. Belendryasova, V.A. Gani, Eur. Phys. J. C 78, 340 (2018)

    Article  ADS  Google Scholar 

  53. F.C. Simas, A.R. Gomes, K.Z. Nobrega, J.C.R.E. Oliveira, J. High Energy Phys. 09, 104 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Bazeia.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bazeia, D., Losano, L. & Olmo, G.J. Novel connection between lump-like structures and quantum mechanics. Eur. Phys. J. Plus 133, 251 (2018). https://doi.org/10.1140/epjp/i2018-12082-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2018-12082-2