Skip to main content
Log in

Analytical solutions of the Keller-Segel chemotaxis model involving fractional operators without singular kernel

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

This paper discusses the application of analytical techniques, namely the Laplace homotopy perturbation method and the modified homotopy analysis transform method, for solving a coupled one-dimensional time-fractional Keller-Segel chemotaxis model. The first method is based on a combination of the Laplace transform and homotopy methods, while the second method is an analytical technique based on the homotopy polynomial. Fractional derivatives with exponential and Mittag-Leffler laws in Liouville-Caputo sense are considered. The effectiveness of both methods is demonstrated by finding the exact solutions of the Keller-Segel chemotaxis model. Some examples have been presented in order to compare the results obtained with both fractional-order derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. K.M. Owolabi, A. Atangana, Adv. Differ. Equ. 2017, 223 (2017)

    Article  Google Scholar 

  2. K.M. Owolabi, A. Atangana, Comput. Appl. Math. https://doi.org/10.1007/s40314-017-0445-x (2017)

  3. B. Saad, T. Alkahtani, A. Atangana, I. Koca, Adv. Mech. Eng. https://doi.org/10.1177/1687814016681906 (2016)

  4. J. Hristov, Progr. Fract. Differ. Appl. 3, 19 (2017)

    Article  Google Scholar 

  5. J. Singh, D. Kumar, R. Swroop, S. Kumar, Neural Comput. Appl. https://doi.org/10.1007/s00521-017-2909-8 (2017)

  6. S. Kumar, A. Kumar, Z.M. Odibat, Math. Methods Appl. Sci. 40, 4134 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  7. I. Podlubny, Fractional Differential Equations (Academic Press, New York, 1999)

  8. A. Atangana, A. Secer, Abstr. Appl. Anal. 2013, 279681 (2013)

    Google Scholar 

  9. M. Caputo, M. Fabrizio, Progr. Fract. Differ. Appl. 1, 73 (2015)

    Google Scholar 

  10. A. Atangana, D. Baleanu, Therm. Sci. 20, 763 (2016)

    Article  Google Scholar 

  11. N.A. Pirim, F. Ayaz, Appl. Math. 7, 2307 (2016)

    Article  Google Scholar 

  12. S. Choudhary, V. Daftardar-Gejji, Invariant subspace method: a tool for solving fractional partial differential equations, arXiv:1609.04209 (2016)

  13. M. Hamarsheh, A.I. Ismail, Z. Odibat, Appl. Math. Sci. 10, 1131 (2016)

    Google Scholar 

  14. A. Ghorbani, Chaos Solitons Fractals 39, 1486 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  15. S. Rathore, D. Kumar, J. Singh, S. Gupta, Int. J. Ind. Math. 4, 301 (2012)

    Google Scholar 

  16. J. Vahidi, J. Math. Comput. Sci. 16, 88 (2016)

    Article  Google Scholar 

  17. R.K. Pandey, H.K. Mishra, Adv. Comput. Math. 43, 365 (2017)

    Article  MathSciNet  Google Scholar 

  18. Z.H. Guoa, O. Acan, S. kumar, Therm. Sci. 20, 739 (2016)

    Article  Google Scholar 

  19. S. Abbasbandy, E. Shivanian, K. Vajravelu, S. Kumar, Int. J. Numer. Methods Heat Fluid Flow 27, 486 (2017)

    Article  Google Scholar 

  20. H. Jafari, S. Seifi, Commun. Nonlinear Sci. Numer. Simul. 14, 2006 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  21. H. Jafari, S. Seifi, Commun. Nonlinear Sci. Numer. Simul. 14, 1962 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  22. S.J. Liao, Int. J. Nonlinear Mech. 32, 815 (1997)

    Article  ADS  Google Scholar 

  23. S. Kumar, A. Kumar, Z.M. Odibat, Math. Methods Appl. Sci. 40, 4134 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  24. C. Li, A. Kumar, S. Kumar, X.J. Yang, J. Nonlinear Sci. Appl. 9, 5463 (2016)

    Article  MathSciNet  Google Scholar 

  25. E.F. Keller, L.A. Segel, J. Theor. Biol. 26, 399 (1970)

    Article  Google Scholar 

  26. A. Atangana, Appl. Math. Model. 39, 2909 (2015)

    Article  MathSciNet  Google Scholar 

  27. A. Atangana, B.S.T. Alkahtani, Entropy 17, 4439 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  28. A. Atangana, E. Alabaraoye, Adv. Differ. Equ. 2013, 94 (2013)

    Article  Google Scholar 

  29. M. Zayernouri, A. Matzavinos, J. Comput. Phys. 317, 1 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  30. S. Kumar, A. Kumar, I.K. Argyros, Numer. Algorithms 75, 213 (2017)

    Article  MathSciNet  Google Scholar 

  31. V.F. Morales-Delgado, J.F. Gómez-Aguilar, H. Yépez-Martínez, D. Baleanu, R.F. Escobar-Jimenez, V.H. Olivares-Peregrino, Adv. Differ. Equ. 2016, 164 (2016)

    Article  Google Scholar 

  32. S. Kumar, Appl. Math. Model. 38, 3154 (2014)

    Article  MathSciNet  Google Scholar 

  33. S. Kumar, M.M. Rashidi, Comput. Phys. Commun. 185, 1947 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  34. Z. Odibat, A.S. Bataineh, Math. Methods Appl. Sci. 38, 991 (2015)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. F. Gómez-Aguilar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morales-Delgado, V.F., Gómez-Aguilar, J.F., Kumar, S. et al. Analytical solutions of the Keller-Segel chemotaxis model involving fractional operators without singular kernel. Eur. Phys. J. Plus 133, 200 (2018). https://doi.org/10.1140/epjp/i2018-12038-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2018-12038-6

Navigation