Skip to main content
Log in

Area (or entropy) products in modified gravity and Kerr-MG/CFT correspondence

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

We examine the thermodynamic features of inner and outer horizons of modified gravity (MOG) and its consequences on the holographic duality. We derive the thermodynamic product relations for this gravity. We consider both spherically symmetric solutions and axisymmetric solutions of MOG. We find that the area product formula for both cases is not mass-independent because they depend on the ADM mass parameter while, in Einstein gravity, this formula is mass-independent (universal). We also explicitly verify the first law, which is fulfilled at the inner horizon (IH) as well as at the outer horizon (OH). We derive thermodynamic products and sums for this kind of gravity. We further derive the Smarr-like mass formula for this kind of black hole (BH) in MOG. Moreover, we derive the area bound for both horizons. Furthermore, we show that the central charges of the left and right moving sectors are the same via universal thermodynamic relations. We also discuss the most important result of the Kerr-MOG/CFT correspondence. We derive the central charges for Kerr-MOG BH, which is \(c_{L}=12J\) and it is similar to Kerr BH. We also derive the dimensionless temperature for extreme Kerr-MOG BH which is \(T_{L} = \frac{1}{4\pi} \frac{\alpha+2}{\sqrt{1+\alpha}}\), where \(\alpha\) is a MOG parameter. This is actually the dual CFT temperature of the Frolov-Thorne thermal vacuum state. In the limit \(\alpha = 0\), we find the dimensionless temperature of a Kerr BH. Consequently, the Cardy formula gives us microscopic entropy for extreme Kerr-MOG BH, \(S_{\rm micro}=\frac{\alpha+2}{\sqrt{1+\alpha}} \pi J\), for the CFT, which is completely in agreement with the macroscopic Bekenstein-Hawking entropy. Therefore we may conjecture that, in the extremal limit, the Kerr-MOG BH is holographically dual to a chiral 2D CFT with central charge \(c_{L}=12J\). Finally, we derive the mass-independent area (or entropy) product relations for regular MOG BH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Bardeen et al., Commun. Math. Phys. 31, 161 (1973)

    Article  ADS  Google Scholar 

  2. J.D. Bekenstein, Phys. Rev. D 7, 2333 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  3. M. Ansorg, J. Hennig, Phys. Rev. Lett. 102, 221102 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  4. M. Visser, Phys. Rev. D 88, 044014 (2013)

    Article  ADS  Google Scholar 

  5. P. Pradhan, Phys. Lett. B 747, 64 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  6. P. Pradhan, Eur. Phys. J. C 74, 2887 (2014)

    Article  ADS  Google Scholar 

  7. P. Pradhan, Gen. Relativ. Gravit. 48, 19 (2016)

    Article  ADS  Google Scholar 

  8. P. Pradhan, Int. J. Mod. Phys. D 26, 1750010 (2017)

    Article  ADS  Google Scholar 

  9. P. Pradhan, Mod. Phys. Lett. A 30, 1550170 (2015)

    Article  ADS  Google Scholar 

  10. P. Pradhan, JETP Lett. 102, 481 (2015)

    Article  Google Scholar 

  11. P. Pradhan, Gen. Relativ. Gravit. 48, 98 (2016)

    Article  ADS  Google Scholar 

  12. P. Pradhan, Eur. Phys. J. C 76, 131 (2016)

    Article  ADS  Google Scholar 

  13. M. Cvetič et al., Phys. Rev. Lett. 106, 121301 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  14. F. Larsen, Phys. Rev. D 56, 1005 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  15. A. Castro, M.J. Rodriguez, Phys. Rev. D 86, 024008 (2012)

    Article  ADS  Google Scholar 

  16. S. Detournay, Phys. Rev. Lett. 109, 031101 (2012)

    Article  ADS  Google Scholar 

  17. V. Faraoni, A.F.Z. Moreno, Phys. Rev. D. 88, 044011 (2013)

    Article  ADS  Google Scholar 

  18. B. Chen et al., J. High Energy Phys. 11, 017 (2012)

    Article  ADS  Google Scholar 

  19. J. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  20. A. Strominger, C. Vafa, Phys. Lett. B. 379, 99 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  21. J.D. Brown, M. Henneaux, Commun. Math. Phys. 104, 207 (1986)

    Article  ADS  Google Scholar 

  22. M. Guica et al., Phys. Rev. D 80, 124008 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  23. A. Castro et al., Phys. Rev. D 82, 024008 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  24. V.P. Frolov, K.S. Thorne, Phys. Rev. D. 39, 2125 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  25. J.W. Moffat, JCAP 03, 004 (2006)

    Article  ADS  Google Scholar 

  26. B. Chen, J. Zhang, Phys. Rev. D. 87, 081505(R) (2013)

    Article  ADS  Google Scholar 

  27. J.W. Moffat, S. Rahvar, Mon. Not. R. Acad. Sci. 436, 1439 (2013)

    Article  ADS  Google Scholar 

  28. J.W. Moffat, S. Rahvar, Mon. Not. R. Acad. Sci. 441, 3724 (2014)

    Article  ADS  Google Scholar 

  29. J.W. Moffat, V.T. Toth, Phys. Rev. D. 91, 043004 (2015)

    Article  ADS  Google Scholar 

  30. J.R. Brownstein, J.W. Moffat, Mon. Not. R. Acad. Sci. 382, 29 (2007)

    Article  ADS  Google Scholar 

  31. J.R. Mureika et al., Phys. Lett. B 757, 528 (2016)

    Article  ADS  Google Scholar 

  32. J.W. Moffat, Eur. Phys. J. C 75, 175 (2015)

    Article  ADS  Google Scholar 

  33. J.W. Moffat, Eur. Phys. J. C 75, 130 (2015)

    Article  ADS  Google Scholar 

  34. W. Xu et al., Phys. Lett. B 746, 53 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  35. E.T. Newman et al., J. Math. Phys. 6, 918 (1965)

    Article  ADS  Google Scholar 

  36. C.A.R. Herdeiro, E. Radu, Int. J. Mod. Phys. D 24, 1542014 (2015) and references therein

    Article  ADS  Google Scholar 

  37. M. Cvetič, D. Youm, Phys. Rev. D 54, 2612 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  38. M. Cvetič, F. Larsen, Nucl. Phys. B 506, 107 (1997)

    Article  ADS  Google Scholar 

  39. M. Cvetič, F. Larsen, Phys. Rev. D 56, 4994 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  40. T. Hartman et al., J. High Energy Phys. 04, 019 (2009)

    Article  ADS  Google Scholar 

  41. J. Bardeen, Conference Proceedings in GR5 (Tiflis, U.S.S.R., 1968)

  42. E. Ayón-Beato, A. García, Phys. Rev. Lett. 80, 5056 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parthapratim Pradhan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pradhan, P. Area (or entropy) products in modified gravity and Kerr-MG/CFT correspondence. Eur. Phys. J. Plus 133, 187 (2018). https://doi.org/10.1140/epjp/i2018-12019-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2018-12019-9

Navigation