A derivation of Weyl-Lanczos equations

Regular Article

Abstract.

The Lanczos potential for the Weyl tensor is derived from a quadratic curvature Lagrangian by making use of the exterior algebra of forms and the variational principles with constraints.

References

  1. 1.
    N. Straumann, General Relativity, 2 ed. (Springer, Dordrecht, 2013)Google Scholar
  2. 2.
    P. Szekeres, J. Math. Phys. 6, 1387 (1965)ADSCrossRefGoogle Scholar
  3. 3.
    C. Lanczos, Ann. Math. 39, 842 (1938)MathSciNetCrossRefGoogle Scholar
  4. 4.
    C. Lanczos, Rev. Mod. Phys. 21, 497 (1949)ADSCrossRefGoogle Scholar
  5. 5.
    C. Lanczos, Rev. Mod. Phys. 34, 379 (1962)ADSCrossRefGoogle Scholar
  6. 6.
    H. Takeno, Tensor N.S. 15, 103 (1964)MathSciNetGoogle Scholar
  7. 7.
    A.Z. Petrov, Einstein Spaces (Pergamon Press, Oxford, 1969)Google Scholar
  8. 8.
    R. Penrose, Ann. Phys. 10, 171 (1960)ADSCrossRefGoogle Scholar
  9. 9.
    E.T. Newman, R. Penrose, J. Math. Phys. 3, 566 (1962)ADSCrossRefGoogle Scholar
  10. 10.
    W.F. Maher, J.D. Zund, Nuovo Cimento A 57, 638 (1968)ADSCrossRefGoogle Scholar
  11. 11.
    A.H. Taub, Comput. Math. Appl. 1, 377 (1975)CrossRefGoogle Scholar
  12. 12.
    S.B. Edgar, A. Höglund, Gen. Relativ. Gravit. 32, 2307 (2000)ADSCrossRefGoogle Scholar
  13. 13.
    S.B. Edgar, Gen. Relativ. Gravit. 26, 329 (1994)ADSCrossRefGoogle Scholar
  14. 14.
    S.B. Edgar, J.M.M. Senovilla, Class. Quantum Grav. 21, L133 (2004)ADSCrossRefGoogle Scholar
  15. 15.
    P. O’Donnell, H. Pye, Electron. J. Theor. Phys. 7, 327 (2010)Google Scholar
  16. 16.
    E. Massa, E. Pagani, Gen. Relativ. Gravit. 16, 805 (1984)ADSCrossRefGoogle Scholar
  17. 17.
    P. O’Donnell, Introduction to 2-Spinors in General Relativity (World Scientific Pub. Co. Pte. Ltd., Singapore, 2003)Google Scholar
  18. 18.
    W. Kopczyński, Ann. Phys. (N.Y.) 203, 308 (1990)ADSCrossRefGoogle Scholar
  19. 19.
    T. Dereli, R.W. Tucker, Class. Quantum Grav. 4, 791 (1987)ADSCrossRefGoogle Scholar
  20. 20.
    F.W. Hehl, J.D. McCrea, E.W. Mielke, Y. Ne’eman, Phys. Rep. 258, 1 (1995)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    S.B. Edgar, Gen. Relativ. Gravit. 19, 1149 (1987)ADSCrossRefGoogle Scholar
  22. 22.
    P. O’Donnell, Eur. Phys. J. Plus 126, 87 (2011)CrossRefGoogle Scholar
  23. 23.
    M.D. Roberts, Nuovo Cimento B 110, 1165 (1995)ADSCrossRefGoogle Scholar
  24. 24.
    G.F. Torres del Castillo, J. Math. Phys. 36, 195 (1995)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    F. Andersson, S.B. Edgar, Class. Quantum Grav. 18, 2297 (2001)ADSCrossRefGoogle Scholar
  26. 26.
    O.R. Baldwin, G.B Jeffrey, Proc. R. Soc. London A 111, 95 (1926)ADSCrossRefGoogle Scholar
  27. 27.
    A. Baykal, Turk. J. Phys. 40, 77 (2016)CrossRefGoogle Scholar
  28. 28.
    A. Baykal, pp-waves in modified gravity, arXiv:1510.00522v5 [gr-qc]Google Scholar
  29. 29.
    J.L. López-Bonilla, G. Ovando, J.J. Peña, Found. Phys. Lett. 12, 401 (1999)MathSciNetCrossRefGoogle Scholar
  30. 30.
    G. Bergqvist, J. Math. Phys. 38, 3142 (1997)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    F. Bampi, G. Caviglia, Gen. Relativ. Gravit. 15, 375 (1983)ADSCrossRefGoogle Scholar
  32. 32.
    F. Bampi, G. Caviglia, Gen. Relativ. Gravit. 16, 423 (1984)ADSCrossRefGoogle Scholar
  33. 33.
    S.B. Edgar, A. Höglund, Proc. R. Soc. London A 453, 835 (1997)CrossRefGoogle Scholar
  34. 34.
    A.A. Garcìa, W.H. Hehl, C. Heinicke, A. Macìas, Class. Quantum Grav. 21, 1099 (2004)ADSCrossRefGoogle Scholar
  35. 35.
    P.T. Chrusciel, A. Gerber, Gen. Relativ. Gravit. 37, 891 (2005)ADSCrossRefGoogle Scholar
  36. 36.
    P. Dolan, A. Gerber, J. Math. Phys. 44, 3013 (2003)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    S.B. Edgar, J. Math. Phys. 44, 5375 (2003)ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    P. Dolan, B. Muratori, Mod. Phys. Lett. A 13, 2347 (1998)ADSCrossRefGoogle Scholar
  39. 39.
    R. Illge, Gen. Relativ. Gravit. 20, 551 (1988)ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    P. Dolan, C.W. Kim, Proc. R. Soc. London A 447, 557 (1994)ADSCrossRefGoogle Scholar
  41. 41.
    D. Bini, C. Cherubini, R.T. Jantzen, R. Ruffini, Int. J. Mod. Phys. D 12, 1363 (2003)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics, Faculty of Arts and SciencesNiğde Ömer Halisdemir UniversityNiğdeTurkey

Personalised recommendations