Skip to main content
Log in

Covariant theory of gravitation in the framework of special relativity

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

In this work, we study the magnetic effects of gravity in the framework of special relativity. Imposing covariance of the gravitational force with respect to the Lorentz transformations, we show from a thought experiment that a magnetic-like force must be present whenever two or more bodies are in motion. The exact expression for this gravitomagnetic force is then derived purely from special relativity and the consequences of such a covariant theory are developed. For instance, we show that the gravitomagnetic fields satisfy a system of differential equations similar to the Maxwell equations of electrodynamics. This implies that the gravitational waves spread out with the speed of light in a flat spacetime, which is in agreement with the recent results concerning the gravitational waves detection. We also propose that the vector potential can be associated with the interaction momentum in the same way as the scalar potential is usually associated with the interaction energy. Other topics are also discussed, for example, the transformation laws for the fields, the energy and momentum stored in the gravitomagnetic fields, the invariance of the gravitational mass and so on. We remark that is not our intention here to propose an alternative theory of gravitation but, rather, only a first approximation for the gravitational phenomena, so that it can be applied whenever the gravitational force can be regarded as an ordinary effective force field and special relativity can be used with safety. To make this point clear we present briefly a comparison between our approach and that based on the (linearized) Einstein’s theory. Finally, we remark that although we have assumed nothing from the electromagnetic theory, we found that gravity and electricity share many properties in common --these similarities, in fact, are just a requirement of special relativity that must apply to any physically acceptable force field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Faraday, Proc. R. Soc. London 5, 994 (1843)

    Article  Google Scholar 

  2. J.C. Maxwell, Philos. Trans. R. Soc. London 155, 459 (1865)

    Article  Google Scholar 

  3. G. Holzmüller, Z. Math. Phys. 15, 69 (1870)

    Google Scholar 

  4. F.F. Tisserand, C. R. Acad. Sci. 75, 760 (1872)

    Google Scholar 

  5. F.F. Tisserand, C. R. Acad. Sci. 100, 313 (1890)

    Google Scholar 

  6. O. Heaviside, The Electrician 31, 281 (1893)

    Google Scholar 

  7. H.A. Lorentz, Proc. R. Netherlands Acad. Arts Sci. 2, 559 (1900)

    Google Scholar 

  8. M.H. Poincaré, Rend. Circ. Mat. Palermo 21, 129 (1906)

    Article  Google Scholar 

  9. H. Minkowski, Math. Ann. 68, 472 (1910)

    Article  MathSciNet  Google Scholar 

  10. A. Einstein, Vierteljahrsschr. gerichtl. Med. öffentl. Sanit. 44, 37 (1912)

    Google Scholar 

  11. A. Einstein, Ann. Phys. 354, 769 (1916)

    Article  Google Scholar 

  12. W. de Sitter, Mon. Not. R. Astron. Soc. 76, 699 (1916)

    Article  ADS  Google Scholar 

  13. H. Thirring, Phys. Z. 19, 33 (1918)

    Google Scholar 

  14. J. Lense, H. Thirring, Phys. Z. 19, 156 (1918)

    Google Scholar 

  15. L.H. Thomas, London, Edinburgh, Dublin Philos. Mag. J. Sci. 3, 1 (1927)

    Article  Google Scholar 

  16. A. Papapetrou, Proc. R. Soc. London Ser. A 209, 248 (1951)

    Article  ADS  Google Scholar 

  17. O. Jefimenko, Causality, Electromagnetic Induction, and Gravitation: A Different Approach to the Theory of Electromagnetic and Gravitational Fields (Electret Scientific Company, 2006)

  18. O. Jefimenko, Gravitation and Cogravitation: Developing Newton’s Theory of Gravitation to its Physical and Mathematical Conclusion (Electret Scientific Company, 2006)

  19. V. Benci, D. Fortunato, Found. Phys. 28, 333 (1998)

    Article  MathSciNet  Google Scholar 

  20. W.W. Salisbury, D.H. Menzel, Nature 252, 664 (1974)

    Article  ADS  Google Scholar 

  21. P. Lorrain, D.H. Menzel, W.W. Salisbury, Nature 257, 161 (1975)

    Article  ADS  Google Scholar 

  22. D. Bedford, P. Krumm, Am. J. Phys. 53, 889 (1985)

    Article  ADS  Google Scholar 

  23. H. Kolbenstvedt, Am. J. Phys. 56, 523 (1988)

    Article  ADS  Google Scholar 

  24. A.R. Khan, R.F. O’Connell, Nature 261, 480 (1976)

    Article  ADS  Google Scholar 

  25. B. Fuchs, Phys. Lett. A 82, 285 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  26. H. Behera, P.C. Naik, Int. J. Mod. Phys. A 19, 4207 (2004)

    Article  ADS  Google Scholar 

  27. D.H. Sattinger, J. Dyn. Differ. Equ. 27, 1007 (2013)

    Article  Google Scholar 

  28. G.A. Ummarino, A. Gallerati, Eur. Phys. J. C 77, 549 (2017)

    Article  ADS  Google Scholar 

  29. H. Behera, Eur. Phys. J. C 77, 822 (2017)

    Article  ADS  Google Scholar 

  30. R.T. Jantzen, P. Carini, D. Bini, Ann. Phys. 215, 1 (1992)

    Article  ADS  Google Scholar 

  31. B. Mashhoon, Gravitoelectromagnetism, in Reference Frames and Gravitomagnetism (World Scientific, 2001) pp. 121--132, https://doi.org/10.1142/9789812810021_0009

  32. J.F. Pascual-Sánchez, L. Floría, A. San Miguel, F. Vicente (Editors), Reference Frames and Gravitomagnetism (World Scientific, 2001)

  33. B. Mashhoon, Gravitoelectromagnetism: A brief review, in The Measurement of Gravitomagnetism: A Challenging Enterprise, edited by L. Iorio (Nova Science Pub Inc., New York, 2006) pp. 29--39, arXiv:gr-qc/0311030

  34. A. Tartaglia, M.L. Ruggiero, Eur. J. Phys. 25, 203 (2003)

    Article  Google Scholar 

  35. D. Bini, C. Cherubini, C. Chicone, B. Mashhoon, Class. Quantum Grav. 25, 225014 (2008)

    Article  ADS  Google Scholar 

  36. L.F.O. Costa, C.A. Herdeiro, Phys. Rev. D 78, 024021 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  37. L.F.O. Costa, J. Natário, Gen. Relativ. Gravit. 46, 1 (2014)

    Article  Google Scholar 

  38. S.J. Clark, R.W. Tucker, Class. Quantum Grav. 17, 4125 (2000)

    Article  ADS  Google Scholar 

  39. J. Ramos, M. de Montigny, F.C. Khanna, Gen. Relativ. Gravit. 42, 2403 (2010)

    Article  ADS  Google Scholar 

  40. A. Lasenby, C. Doran, S. Gull, Philos. Trans. R. Soc. London A 356, 487 (1998)

    Article  ADS  Google Scholar 

  41. G.E. Pugh, Weapons Systems Evaluation Group, Research Memorandum, No 11 (WSEG, 1959)

  42. L.I. Schiff, Phys. Rev. Lett. 4, 215 (1960)

    Article  ADS  Google Scholar 

  43. L.I. Schiff, Proc. Natl. Acad. Sci. 46, 871 (1960)

    Article  ADS  Google Scholar 

  44. R.L. Forward, Am. J. Phys. 31, 166 (1963)

    Article  ADS  Google Scholar 

  45. M.L. Ruggiero, A. Tartaglia, Nuovo Cimento B 117, 743 (2002)

    ADS  Google Scholar 

  46. C.W.F. Everitt et al., Phys. Rev. Lett. 106, 221101 (2011)

    Article  ADS  Google Scholar 

  47. L. Iorio, H.I.M. Lichtenegger, M.L. Ruggiero, C. Corda, Astrophys. Space Sci. 331, 351 (2011)

    Article  ADS  Google Scholar 

  48. C.W.F. Everitt et al., Class. Quantum Grav. 32, 224001 (2015)

    Article  ADS  Google Scholar 

  49. B.P. Abbott et al., Phys. Rev. Lett. 116, 061102 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  50. B.P. Abbott et al., Phys. Rev. Lett. 116, 241103 (2016)

    Article  ADS  Google Scholar 

  51. B. Abbott, R. Abbott, R. Adhikari, A. Ananyeva, S. Anderson, S. Appert, K. Arai, M. Araya, J. Barayoga, B. Barish et al., Astrophys. J. Lett. 848, L12 (2017)

    Article  ADS  Google Scholar 

  52. B.P. Abbott, R. Abbott, T.D. Abbott, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, R.X. Adhikari, V.B. Adya et al., Phys. Rev. Lett. 119, 161101 (2017)

    Article  ADS  Google Scholar 

  53. C.G. Adler, Am. J. Phys. 55, 739 (1987)

    Article  ADS  Google Scholar 

  54. L.B. Okun, Phys. Today 42, 31 (1989)

    Article  Google Scholar 

  55. L.B. Okun, Sov. Phys. Usp. 32, 629 (1989)

    Article  ADS  Google Scholar 

  56. L.B. Okun, Energy and Mass in Relativity Theory (World Scientific, 2009)

  57. M. Jammer, Concepts of Mass in Contemporary Physics and Philosophy (Princeton University Press, 2000)

  58. R.P. Feynman, R.B. Leighton, M. Sands, The Feynman Lectures on Physics, Online Edition (Basic books, 2013) on-line at http://www.feynmanlectures.caltech.edu

  59. R. Resnick, Introduction to Special Relativity (Wiley Estern, 1971)

  60. D.J. Griffiths, Introduction to Electrodynamics, 4th ed. (Pearson, 2013)

  61. E.M. Purcell, Electricity and Magnetism, Berkeley Physics Course, Vol. 2 (McGraw-Hill Science, 1984)

  62. J.M. Supplee, Am. J. Phys. 57, 75 (1989)

    Article  ADS  Google Scholar 

  63. G.E.A. Matsas, Phys. Rev. D 68, 027701 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  64. R.S. Vieira, EPL 116, 50007 (2016)

    Article  ADS  Google Scholar 

  65. C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation (Macmillan, 1973)

  66. L.D. Landau, E.M. Lifshitz, The Classical Theory of Fields, Course of Theoretical Physics Series, Vol. 2, 4th edition (Butterworth-Heinemann, 1980)

  67. W. Pauli, Theory of Relativity (Courier Corporation, 1981)

  68. R.M. Wald, General Relativity (University Of Chicago Press, 1984)

  69. A. Matte, Can. J. Math. 5, 1 (1953)

    Article  MathSciNet  Google Scholar 

  70. L. Bel, C. R. Hebd. Séances Acad. Sci. 246, 3015 (1958)

    Google Scholar 

  71. A. Bouda, A. Belabbas, Int. J. Theor. Phys. 49, 2630 (2010)

    Article  Google Scholar 

  72. A. Bakopoulos, P. Kanti, Gen. Relativ. Gravit. 46, 1 (2014)

    Article  Google Scholar 

  73. A. Bakopoulos, P. Kanti, Gen. Relativ. Gravit. 49, 44 (2017)

    Article  ADS  Google Scholar 

  74. B. Podolsky, Phys. Rev. 72, 624 (1947)

    Article  ADS  MathSciNet  Google Scholar 

  75. J.A. Heras, Am. J. Phys. 75, 652 (2007)

    Article  ADS  Google Scholar 

  76. M.D. Semon, J.R. Taylor, Am. J. Phys. 64, 1361 (1996)

    Article  ADS  Google Scholar 

  77. D.J. Griffiths, Am. J. Phys. 80, 7 (2012)

    Article  ADS  Google Scholar 

  78. Y. Aharonov, D. Bohm, Phys. Rev. 115, 485 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  79. D.J. Griffiths, Introduction to Quantum Mechanics, 2nd edition (Addison Wesley, 2004)

  80. K.S. Thorne, Rev. Mod. Phys. 52, 299 (1980)

    Article  ADS  Google Scholar 

  81. K.S. Thorne, Gravitational Radiation, Vol. 1 (Cambridge University Press, 1987)

  82. J.P. Costella, B.H.J. McKellar, A.A. Rawlinson, Am. J. Phys. 65, 835 (1997)

    Article  ADS  Google Scholar 

  83. M. Villata, Europhys. Lett. 94, 20001 (2011)

    Article  ADS  Google Scholar 

  84. O.M.P. Bilaniuk, V.K. Deshpande, E.C.G. Sudarshan, Am. J. Phys. 30, 718 (1962)

    Article  ADS  Google Scholar 

  85. A.F. Antippa, A.E. Everett, Phys. Rev. D 8, 2352 (1973)

    Article  ADS  Google Scholar 

  86. E. Recami, Riv. Nuovo Cimento 9, 1 (1986)

    Article  MathSciNet  Google Scholar 

  87. R.I. Sutherland, J.R. Shepanski, Phys. Rev. D 33, 2896 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  88. R.S. Vieira, Rev. Bras. Ensino Fís. 34, 3306 (2012)

    Article  Google Scholar 

  89. J.M. Hill, B.J. Cox, Proc. R. Soc. London A 468, 4174 (2012)

    Article  ADS  Google Scholar 

  90. Y.I. Grushka, Methods Funct. Anal. Topol. 19, 127 (2013)

    MathSciNet  Google Scholar 

  91. K. Peacock, Lato Sensu 1, 48 (2014)

    Article  Google Scholar 

  92. J.M. Hill, B.J. Cox, Z. Angew. Math. Phys. 65, 1251 (2014)

    Article  MathSciNet  Google Scholar 

  93. C. Jin, M. Lazar, Z. Angew. Math. Mech. 95, 690 (2015)

    Article  Google Scholar 

  94. R.P. Feynman, Phys. Rev. 76, 749 (1949)

    Article  ADS  Google Scholar 

  95. E.C.G. Stueckelberg, Helv. Phys. Acta 14, 588 (1941)

    MathSciNet  Google Scholar 

  96. H. Behera, N. Barik, arXiv:1709.06876 (2017)

  97. R.P. Feynman, F.B. Morinigo, W.G. Wagner, Feynman Lectures on Gravitation (Addison-Wesley Publishing Company, 1995)

  98. A. Zee, Quantum Field Theory in a Nutshell, 2nd edition (Princeton University Press, 2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. S. Vieira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vieira, R.S., Brentan, H.B. Covariant theory of gravitation in the framework of special relativity. Eur. Phys. J. Plus 133, 165 (2018). https://doi.org/10.1140/epjp/i2018-11988-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2018-11988-9

Navigation