DarkSide-20k: A 20 tonne two-phase LAr TPC for direct dark matter detection at LNGS

  • C. E. Aalseth
  • F. Acerbi
  • P. Agnes
  • I. F. M. Albuquerque
  • T. Alexander
  • A. Alici
  • A. K. Alton
  • P. Antonioli
  • S. Arcelli
  • R. Ardito
  • I. J. Arnquist
  • D. M. Asner
  • M. Ave
  • H. O. Back
  • A. I. Barrado Olmedo
  • G. Batignani
  • E. Bertoldo
  • S. Bettarini
  • M. G. Bisogni
  • V. Bocci
  • A. Bondar
  • G. Bonfini
  • W. Bonivento
  • M. Bossa
  • B. Bottino
  • M. Boulay
  • R. Bunker
  • S. Bussino
  • A. Buzulutskov
  • M. Cadeddu
  • M. Cadoni
  • A. Caminata
  • N. Canci
  • A. Candela
  • C. Cantini
  • M. Caravati
  • M. Cariello
  • M. Carlini
  • M. Carpinelli
  • A. Castellani
  • S. Catalanotti
  • V. Cataudella
  • P. Cavalcante
  • S. Cavuoti
  • R. Cereseto
  • A. Chepurnov
  • C. Cicalò
  • L. Cifarelli
  • M. Citterio
  • A. G. Cocco
  • M. Colocci
  • S. Corgiolu
  • G. Covone
  • P. Crivelli
  • I. D’Antone
  • M. D’Incecco
  • D. D’Urso
  • M. D. Da Rocha Rolo
  • M. Daniel
  • S. Davini
  • A. de Candia
  • S. De Cecco
  • M. De Deo
  • G. De Filippis
  • G. De Guido
  • G. De Rosa
  • G. Dellacasa
  • M. Della Valle
  • P. Demontis
  • A. Derbin
  • A. Devoto
  • F. Di Eusanio
  • G. Di Pietro
  • C. Dionisi
  • A. Dolgov
  • I. Dormia
  • S. Dussoni
  • A. Empl
  • M. Fernandez Diaz
  • A. Ferri
  • C. Filip
  • G. Fiorillo
  • K. Fomenko
  • D. Franco
  • G. E. Froudakis
  • F. Gabriele
  • A. Gabrieli
  • C. Galbiati
  • P. Garcia Abia
  • A. Gendotti
  • A. Ghisi
  • S. Giagu
  • P. Giampa
  • G. Gibertoni
  • C. Giganti
  • M. A. Giorgi
  • G. K. Giovanetti
  • M. L. Gligan
  • A. Gola
  • O. Gorchakov
  • A. M. Goretti
  • F. Granato
  • M. Grassi
  • J. W. Grate
  • G. Y. Grigoriev
  • M. Gromov
  • M. Guan
  • M. B. B. Guerra
  • M. Guerzoni
  • M. Gulino
  • R. K. Haaland
  • A. Hallin
  • B. Harrop
  • E. W. Hoppe
  • S. Horikawa
  • B. Hosseini
  • D. Hughes
  • P. Humble
  • E. V. Hungerford
  • An. Ianni
  • C. Jillings
  • T. N. Johnson
  • K. Keeter
  • C. L. Kendziora
  • S. Kim
  • G. Koh
  • D. Korablev
  • G. Korga
  • A. Kubankin
  • M. Kuss
  • M. Kuźniak
  • M. La Commara
  • B. Lehnert
  • X. Li
  • M. Lissia
  • G. U. Lodi
  • B. Loer
  • G. Longo
  • P. Loverre
  • R. Lussana
  • L. Luzzi
  • Y. Ma
  • A. A. Machado
  • I. N. Machulin
  • A. Mandarano
  • L. Mapelli
  • M. Marcante
  • A. Margotti
  • S. M. Mari
  • M. Mariani
  • J. Maricic
  • C. J. Martoff
  • M. Mascia
  • M. Mayer
  • A. B. McDonald
  • A. Messina
  • P. D. Meyers
  • R. Milincic
  • A. Moggi
  • S. Moioli
  • J. Monroe
  • A. Monte
  • M. Morrocchi
  • B. J. Mount
  • W. Mu
  • V. N. Muratova
  • S. Murphy
  • P. Musico
  • R. Nania
  • A. Navrer Agasson
  • I. Nikulin
  • V. Nosov
  • A. O. Nozdrina
  • N. N. Nurakhov
  • A. Oleinik
  • V. Oleynikov
  • M. Orsini
  • F. Ortica
  • L. Pagani
  • M. Pallavicini
  • S. Palmas
  • L. Pandola
  • E. Pantic
  • E. Paoloni
  • G. Paternoster
  • V. Pavletcov
  • F. Pazzona
  • S. Peeters
  • K. Pelczar
  • L. A. Pellegrini
  • N. Pelliccia
  • F. Perotti
  • R. Perruzza
  • V. Pesudo
  • C. Piemonte
  • F. Pilo
  • A. Pocar
  • T. Pollmann
  • D. Portaluppi
  • D. A. Pugachev
  • H. Qian
  • B. Radics
  • F. Raffaelli
  • F. Ragusa
  • M. Razeti
  • A. Razeto
  • V. Regazzoni
  • C. Regenfus
  • B. Reinhold
  • A. L. Renshaw
  • M. Rescigno
  • F. Retière
  • Q. Riffard
  • A. Rivetti
  • S. Rizzardini
  • A. Romani
  • L. Romero
  • B. Rossi
  • N. Rossi
  • A. Rubbia
  • D. Sablone
  • P. Salatino
  • O. Samoylov
  • E. Sánchez García
  • W. Sands
  • S. Sanfilippo
  • M. Sant
  • R. Santorelli
  • C. Savarese
  • E. Scapparone
  • B. Schlitzer
  • G. Scioli
  • E. Segreto
  • A. Seifert
  • D. A. Semenov
  • A. Shchagin
  • L. Shekhtman
  • E. Shemyakina
  • A. Sheshukov
  • M. Simeone
  • P. N. Singh
  • P. Skensved
  • M. D. Skorokhvatov
  • O. Smirnov
  • G. Sobrero
  • A. Sokolov
  • A. Sotnikov
  • F. Speziale
  • R. Stainforth
  • C. Stanford
  • G. B. Suffritti
  • Y. Suvorov
  • R. Tartaglia
  • G. Testera
  • A. Tonazzo
  • A. Tosi
  • P. Trinchese
  • E. V. Unzhakov
  • A. Vacca
  • E. Vázquez-Jáuregui
  • M. Verducci
  • T. Viant
  • F. Villa
  • A. Vishneva
  • B. Vogelaar
  • M. Wada
  • J. Wahl
  • J. Walding
  • H. Wang
  • Y. Wang
  • A. W. Watson
  • S. Westerdale
  • R. Williams
  • M. M. Wojcik
  • S. Wu
  • X. Xiang
  • X. Xiao
  • C. Yang
  • Z. Ye
  • A. Yllera de Llano
  • F. Zappa
  • G. Zappalà
  • C. Zhu
  • A. Zichichi
  • M. Zullo
  • A. Zullo
  • G. Zuzel
Technical Report
  • 17 Downloads

Abstract.

Building on the successful experience in operating the DarkSide-50 detector, the DarkSide Collaboration is going to construct DarkSide-20k, a direct WIMP search detector using a two-phase Liquid Argon Time Projection Chamber (LAr TPC) with an active (fiducial) mass of 23 t (20 t). This paper describes a preliminary design for the experiment, in which the DarkSide-20k LAr TPC is deployed within a shield/veto with a spherical Liquid Scintillator Veto (LSV) inside a cylindrical Water Cherenkov Veto (WCV). This preliminary design provides a baseline for the experiment to achieve its physics goals, while further development work will lead to the final optimization of the detector parameters and an eventual technical design. Operation of DarkSide-50 demonstrated a major reduction in the dominant 39Ar background when using argon extracted from an underground source, before applying pulse shape analysis. Data from DarkSide-50, in combination with MC simulation and analytical modeling, shows that a rejection factor for discrimination between electron and nuclear recoils of \(>3 \times 10^{9}\) is achievable. This, along with the use of the veto system and utilizing silicon photomultipliers in the LAr TPC, are the keys to unlocking the path to large LAr TPC detector masses, while maintaining an experiment in which less than \(< 0.1\) events (other than \(\nu\)-induced nuclear recoils) is expected to occur within the WIMP search region during the planned exposure. DarkSide-20k will have ultra-low backgrounds than can be measured in situ, giving sensitivity to WIMP-nucleon cross sections of \(1.2 \times 10^{-47}\) cm2 (\(1.1 \times 10^{-46}\) cm2) for WIMPs of 1 TeV/c2 (10 TeV/c2) mass, to be achieved during a 5 yr run producing an exposure of 100 t yr free from any instrumental background.

References

  1. 1.
    J.H. Oort, Bull. Astron. Inst. Netherlands 6, 249 (1932)ADSGoogle Scholar
  2. 2.
    F. Zwicky, Helv. Phys. Acta 6, 110 (1933)ADSGoogle Scholar
  3. 3.
    F. Zwicky, Astrophys. J. 86, 217 (1937)ADSGoogle Scholar
  4. 4.
    S.M. Faber, J.S. Gallagher, Annu. Rev. Astron. Astrophys. 17, 135 (1979)ADSGoogle Scholar
  5. 5.
    D.N. Spergel et al., Astrophys. J. Suppl. Ser. 148, 175 (2003)ADSGoogle Scholar
  6. 6.
    D. Clowe et al., Astrophys. J. 648, L109 (2006)ADSGoogle Scholar
  7. 7.
    G. Steigman, M.S. Turner, Nucl. Phys. B 253, 375 (1985)ADSGoogle Scholar
  8. 8.
    G. Bertone, D. Hooper, J. Silk, Phys. Rep. 405, 279 (2005)ADSGoogle Scholar
  9. 9.
    P. Ramond, Phys. Rev. D 3, 2415 (1971)ADSMathSciNetGoogle Scholar
  10. 10.
    Y.A. Gol’fand, E.P. Likhtman, JETP Lett. 13, 323 (1971)ADSGoogle Scholar
  11. 11.
    D.V. Volkov, V.P. Akulov, JETP Lett. 16, 438 (1972)ADSGoogle Scholar
  12. 12.
    J. Wess, B. Zumino, Nucl. Phys. B 70, 39 (1974)ADSGoogle Scholar
  13. 13.
    P. Fayet, Nucl. Phys. B 90, 104 (1975)ADSGoogle Scholar
  14. 14.
    M. Aaboud et al., Phys. Rev. D 94, 032005 (2016)ADSGoogle Scholar
  15. 15.
    The CMS Collaboration, arXiv:1607.05764v1 (2016)Google Scholar
  16. 16.
    P. Cushman, arXiv:1310.8327v2 (2013)Google Scholar
  17. 17.
    J. Billard, E. Figueroa-Feliciano, L. Strigari, Phys. Rev. D 89, 023524 (2014)ADSGoogle Scholar
  18. 18.
    O. Adriani et al., Nature 458, 607 (2009)ADSGoogle Scholar
  19. 19.
    M. Aguilar et al., Phys. Rev. Lett. 113, 121102 (2014)ADSGoogle Scholar
  20. 20.
    L. Feng et al., Phys. Lett. B 728, 250 (2014)ADSGoogle Scholar
  21. 21.
    W.B. Atwood et al., Astrophys. J. 697, 1071 (2009)ADSGoogle Scholar
  22. 22.
    M. Ackermann et al., Astrophys. J. 840, 43 (2017)ADSGoogle Scholar
  23. 23.
    M. Ajello, arXiv:1511.02938v1 (2015)Google Scholar
  24. 24.
    J. Carr, arXiv:1508.06128v1 (2015)Google Scholar
  25. 25.
    C.-S. Chen, F.-F. Lee, G.-L. Lin, Y.-H. Lin, JCAP 10, 049 (2014)ADSGoogle Scholar
  26. 26.
    D.S. Akerib et al., Science 327, 1619 (2010)ADSGoogle Scholar
  27. 27.
    Z. Ahmed et al., Phys. Rev. D 83, 112002 (2011)ADSGoogle Scholar
  28. 28.
    R. Agnese et al., Phys. Rev. Lett. 111, 251301 (2013)ADSGoogle Scholar
  29. 29.
    R. Agnese et al., Phys. Rev. D 92, 072003 (2015)ADSGoogle Scholar
  30. 30.
    R. Agnese et al., Phys. Rev. Lett. 112, 041302 (2014)ADSGoogle Scholar
  31. 31.
    E. Armengaud et al., Phys. Rev. D 86, 051701 (2012)ADSGoogle Scholar
  32. 32.
    G. Angloher et al., Eur. Phys. J. C 72, 1971 (2012)ADSGoogle Scholar
  33. 33.
    R. Bernabei et al., Eur. Phys. J. C 56, 333 (2008)ADSGoogle Scholar
  34. 34.
    R. Bernabei et al., Eur. Phys. J. C 67, 39 (2010)ADSGoogle Scholar
  35. 35.
    R. Bernabei et al., EPJ Web of Conferences 136, 05001 (2017)Google Scholar
  36. 36.
    S.C. Kim et al., Phys. Rev. Lett. 108, 181301 (2012)ADSGoogle Scholar
  37. 37.
    S. Archambault et al., Phys. Lett. B 682, 185 (2009)ADSGoogle Scholar
  38. 38.
    E. Behnke et al., Phys. Rev. Lett. 106, 021303 (2011)ADSGoogle Scholar
  39. 39.
    E. Behnke et al., Phys. Rev. D 90, 079902 (2014)ADSGoogle Scholar
  40. 40.
    C. Amole et al., Phys. Rev. Lett. 114, 231302 (2015)ADSGoogle Scholar
  41. 41.
    C. Amole, arXiv:1510.07754v1 (2015)Google Scholar
  42. 42.
    C.E. Aalseth et al., Phys. Rev. Lett. 101, 251301 (2008)ADSGoogle Scholar
  43. 43.
    C.E. Aalseth et al., Phys. Rev. Lett. 106, 131301 (2011)ADSGoogle Scholar
  44. 44.
    C.E. Aalseth et al., Phys. Rev. D 88, 012002 (2013)ADSGoogle Scholar
  45. 45.
    C.E. Aalseth, arXiv:1401.3295v1 (2014)Google Scholar
  46. 46.
    G.K. Giovanetti et al., Phys. Proc. 61, 77 (2015)ADSGoogle Scholar
  47. 47.
    G.J. Alner et al., Astropart. Phys. 28, 287 (2007)ADSGoogle Scholar
  48. 48.
    E. Aprile et al., Phys. Rev. Lett. 109, 181301 (2012)ADSGoogle Scholar
  49. 49.
    E. Aprile et al., Phys. Rev. Lett. 115, 091302 (2015)ADSGoogle Scholar
  50. 50.
    E. Aprile et al., Phys. Rev. D 94, 122001 (2016)ADSGoogle Scholar
  51. 51.
    D.S. Akerib et al., Phys. Rev. Lett. 112, 091303 (2014)ADSGoogle Scholar
  52. 52.
    D.S. Akerib et al., Phys. Rev. Lett. 116, 161301 (2016)ADSGoogle Scholar
  53. 53.
    A. Manalaysay, presentation at IDM2016 (2016)Google Scholar
  54. 54.
    D.S. Akerib et al., Phys. Rev. Lett. 118, 021303 (2017)ADSGoogle Scholar
  55. 55.
    K. Abe et al., Phys. Lett. B 719, 78 (2013)ADSGoogle Scholar
  56. 56.
    M. Xiao et al., Sci. China Phys. Mech. Astron. 57, 2024 (2014)ADSGoogle Scholar
  57. 57.
    X. Ji, presentation at IDM2016 (2016)Google Scholar
  58. 58.
    X. Cui, arXiv:1708.06917v2 (2017)Google Scholar
  59. 59.
    E. Aprile et al., JCAP 2016, 027 (2016)Google Scholar
  60. 60.
    E. Aprile, arXiv:1705.06655v2 (2017)Google Scholar
  61. 61.
    H. Nelson, presentation at DM2014 (2014)Google Scholar
  62. 62.
    V.A. Kudryavtsev, AIP Conf. Proc. 1672, 060003 (2015) ISSN 0094-243XGoogle Scholar
  63. 63.
    E. Aprile, presentation at LNGS Sci. Comm. Apr. 2015 (2015)Google Scholar
  64. 64.
    A. Marchionni et al., J. Phys. Conf. Ser. 308, 012006 (2011)Google Scholar
  65. 65.
    A. Badertscher, arXiv:1307.0117v1 (2013)Google Scholar
  66. 66.
    J. Calvo, arXiv:1505.02443v1 (2015)Google Scholar
  67. 67.
    A. Hime, arXiv:1110.1005v1 (2011)Google Scholar
  68. 68.
    M.G. Boulay, J. Phys. Conf. Ser. 375, 012027 (2012)Google Scholar
  69. 69.
    P. Benetti et al., Nucl. Instrum. Methods A 574, 83 (2007)ADSGoogle Scholar
  70. 70.
    P. Benetti et al., Astropart. Phys. 28, 495 (2008)Google Scholar
  71. 71.
    P. Agnes et al., Phys. Lett. B 743, 456 (2015)ADSGoogle Scholar
  72. 72.
    P. Agnes et al., Phys. Rev. D 93, 081101 (2016)ADSGoogle Scholar
  73. 73.
    E. Kuflik, A. Pierce, K.M. Zurek, Phys. Rev. D 81, 111701 (2010)ADSGoogle Scholar
  74. 74.
    O. Buchmueller, C. Doglioni, L.-T. Wang, Nat. Phys. 13, 217 (2017)Google Scholar
  75. 75.
    F. Kahlhoefer, Int. J. Mod. Phys. A 32, 1730006 (2017)ADSGoogle Scholar
  76. 76.
    M.G. Boulay, presentation at New Ideas in Dark Matter 2017 (2017)Google Scholar
  77. 77.
    S. Westerdale, PhD Thesis, Princeton University (2016)Google Scholar
  78. 78.
    T. Alexander et al., Astropart. Phys. 49, 44 (2013)ADSGoogle Scholar
  79. 79.
    M.G. Boulay, A. Hime, Astropart. Phys. 25, 179 (2006)ADSGoogle Scholar
  80. 80.
    H. Cao et al., Phys. Rev. D 91, 092007 (2015)ADSGoogle Scholar
  81. 81.
    E.A. Bagnaschi et al., Eur. Phys. J. C 75, 1419 (2015)Google Scholar
  82. 82.
    J. Dobson, presentation at IDM2016 (2016)Google Scholar
  83. 83.
    D. Franco et al., JCAP 2016, 017 (2016)Google Scholar
  84. 84.
    G. Bellini et al., Phys. Rev. D 89, 112007 (2014)ADSGoogle Scholar
  85. 85.
    G. Bellini et al., JCAP 1308, 049 (2013)ADSGoogle Scholar
  86. 86.
    A. Empl, E.V. Hungerford, R. Jasim, P. Mosteiro, JCAP 1408, 064 (2014)ADSGoogle Scholar
  87. 87.
    A. Hitachi, T. Doke, A. Mozumder, Phys. Rev. B 46, 11463 (1992)ADSGoogle Scholar
  88. 88.
    P.A. Amaudruz et al., Astropart. Phys. 85, 1 (2016)ADSGoogle Scholar
  89. 89.
    Z. Wang, L. Bao, X. Hao, Y. Ju, Rev. Sci. Instr. 85, 015116 (2014)ADSGoogle Scholar
  90. 90.
    P. Agnes et al., JINST 12, P01021 (2017)Google Scholar
  91. 91.
    P. Agnes, arXiv:1707.05630v1 (2017)Google Scholar
  92. 92.
    P. Agnes, arXiv:1707.09889v1 (2017)Google Scholar
  93. 93.
    P. Agnes et al., JINST 11, P03016 (2016)Google Scholar
  94. 94.
    P. Agnes et al., JINST 11, P12007 (2016)Google Scholar
  95. 95.
    P. Agnes, arXiv:1611.02750v1 (2016)Google Scholar
  96. 96.
    T. Alexander et al., Phys. Rev. D 88, 092006 (2013)ADSGoogle Scholar
  97. 97.
    F.A. Lindemann, Philos. Mag. 38, 173 (1919)Google Scholar
  98. 98.
    H.C. Urey, F.G. Brickwedde, G.M. Murphy, Phys. Rev. 40, 1 (1932)ADSGoogle Scholar
  99. 99.
    J. de Boer, R.J. Lunbeck, Physica 14, 520 (1948)ADSGoogle Scholar
  100. 100.
    J. de Boer, Physica 14, 139 (1948)ADSGoogle Scholar
  101. 101.
    J. de Boer, A. Michels, Physica 6, 97 (1939)ADSGoogle Scholar
  102. 102.
    J. Bigeleisen, J. Chem. Phys. 34, 1485 (1961)ADSGoogle Scholar
  103. 103.
    G. Boato, G. Scoles, M.E. Vallauri, Nuovo Cimento 23, 1041 (1962)Google Scholar
  104. 104.
    G. Boato, G. Casanova, G. Scoles, M.E. Vallauri, Nuovo Cimento 20, 87 (1961)Google Scholar
  105. 105.
    G. Boato, G. Scoles, M.E. Vallauri, Nuovo Cimento 14, 735 (1959)Google Scholar
  106. 106.
    G. Casanova, A. Levi, N. Terzi, Physica 30, 937 (1964)ADSGoogle Scholar
  107. 107.
    C. Casanova, R. Fieschi, N. Terzi, Nuovo Cimento 18, 837 (1960)Google Scholar
  108. 108.
    R. Fieschi, N. Terzi, Physica 27, 453 (1961)ADSGoogle Scholar
  109. 109.
    J.N. Canongia Lopes, A.A.H. Pádua, L.P.N. Rebelo, J. Bigeleisen, J. Chem. Phys. 118, 5028 (2003)ADSGoogle Scholar
  110. 110.
    J.C.G. Calado, F.A. Dias, J.N.C. Lopes, L.P.N. Rebelo, J. Phys. Chem. B 104, 8735 (2000)Google Scholar
  111. 111.
    W.L. McCabe, E.W. Thiele, Ind. Eng. Chem. 17, 605 (1925)Google Scholar
  112. 112.
    A.J.V. Underwood, Ind. Eng. Chem. 41, 2844 (1949)Google Scholar
  113. 113.
    E.R. Gilliland, Ind. Eng. Chem. 32, 1220 (1940)Google Scholar
  114. 114.
    M.R. Fenske, Ind. Eng. Chem. 24, 482 (1932)Google Scholar
  115. 115.
    Aspen Technology, Inc., Aspen Plus (2015)Google Scholar
  116. 116.
    J. Xu et al., Astropart. Phys. 66, 53 (2015)ADSGoogle Scholar
  117. 117.
    H. Simgen, G. Zuzel, Appl. Radiat. Isot. 67, 922 (2009)Google Scholar
  118. 118.
    V.N. Moieseyev, Titanium Alloys (Taylor & Francis, 2006)Google Scholar
  119. 119.
    D.S. Akerib et al., Astropart. Phys. 62, 33 (2015)ADSGoogle Scholar
  120. 120.
    T. Petersen, Liquid Argon Maximum Convective Heat Flux versus Liquid Depth, DO EN 237, Fermi National Accelerator Laboratory (1990)Google Scholar
  121. 121.
    R. Acciarri, arXiv:1601.05471v1 (2016)Google Scholar
  122. 122.
    I. Ostrovskiy et al., IEEE Trans. Nucl. Sci. 62, 1825 (2015)ADSGoogle Scholar
  123. 123.
    M. D’Incecco, arXiv:1706.04220v1 (2017)Google Scholar
  124. 124.
    C. Piemonte et al., IEEE Trans. Elec. Dev. 63, 1111 (2016)ADSGoogle Scholar
  125. 125.
    A. Ferri et al., JINST 11, P03023 (2016)Google Scholar
  126. 126.
    F. Acerbi et al., IEEE Trans. Elec. Dev. 64, 521 (2017)ADSGoogle Scholar
  127. 127.
    C. Piemonte et al., IEEE NSS/MIC Conf. Rec. 2012, 428 (2012) ISSN 1082-3654Google Scholar
  128. 128.
    A. Gola, C. Piemonte, A. Tarolli, IEEE Trans. Nucl. Sci. 59, 358 (2012)ADSGoogle Scholar
  129. 129.
    F. Corsi et al., Nucl. Instrum. Methods A 572, 416 (2007)ADSGoogle Scholar
  130. 130.
    W.J. Willis, V. Radeka, Nucl. Instrum. Methods 120, 221 (1974)ADSGoogle Scholar
  131. 131.
    V. Radeka, IEEE Trans. Nucl. Sci. 21, 51 (1974)ADSGoogle Scholar
  132. 132.
    V. Radeka, S. Rescia, Nucl. Instrum. Methods A 265, 228 (1988)ADSGoogle Scholar
  133. 133.
    R.L. Chase, C. de La Taille, S. Rescia, N. Seguin, Nucl. Instrum. Methods A 330, 228 (1993)ADSGoogle Scholar
  134. 134.
    R.L. Chase, S. Rescia, IEEE Trans. Nucl. Sci. 44, 1028 (1997)ADSGoogle Scholar
  135. 135.
    M. D’Incecco, arXiv:1706.04213v1 (2017)Google Scholar
  136. 136.
    W. Ootani, Nucl. Instrum. Methods A 732, 146 (2013)ADSGoogle Scholar
  137. 137.
    P.W. Cattaneo et al., Nucl. Instrum. Methods A 828, 191 (2016)ADSGoogle Scholar
  138. 138.
    S.O. Rice, Bell Syst. Tech. J. 23, 282 (1944)Google Scholar
  139. 139.
    J.G. Graeme, Photodiode Amplifiers: OP AMP Solutions (McGraw Hill Professional, 1996) ISBN 9780070242470Google Scholar
  140. 140.
    V.M. Gehman et al., Nucl. Instrum. Methods A 654, 116 (2011)ADSGoogle Scholar
  141. 141.
    A. Wright, P. Mosteiro, B. Loer, F.P. Calaprice, Nucl. Instrum. Methods A 644, 18 (2011)ADSGoogle Scholar
  142. 142.
    C. Buck, M. Yeh, J. Phys. G 43, 093001 (2016)ADSGoogle Scholar
  143. 143.
    G. Bentoumi et al., AECL Nucl. Rev. 1, 57 (2012)Google Scholar
  144. 144.
    Z. Chang et al., Nucl. Instrum. Methods A 769, 112 (2015)ADSGoogle Scholar
  145. 145.
    C.D. Bass et al., Appl. Radiat. Isot. 77, 130 (2013)Google Scholar
  146. 146.
    B.R. Kim et al., J. Kor. Phys. Soc. 66, 768 (2015)ADSGoogle Scholar
  147. 147.
    B.R. Kim et al., Phys. Scr. 90, 055302 (2015)ADSGoogle Scholar
  148. 148.
    J. Ashenfelter et al., JINST 10, P11004 (2015)Google Scholar
  149. 149.
    F. An et al., J. Phys. G 43, 030401 (2016)ADSGoogle Scholar
  150. 150.
    G. Alimonti et al., Nucl. Instrum. Methods A 600, 568 (2009)ADSGoogle Scholar
  151. 151.
    S. Aiello et al., IEEE Trans. Nucl. Sci. 59, 1259 (2012)ADSGoogle Scholar
  152. 152.
    W.H. Lippincott et al., Phys. Rev. C 81, 045803 (2010)ADSGoogle Scholar
  153. 153.
    L.W. Kastens, S.B. Cahn, A. Manzur, D.N. McKinsey, Phys. Rev. C 80, 045809 (2009)ADSGoogle Scholar
  154. 154.
    D. Vénos, O. Dragoun, A. Spalek, M. Vobecký, Nucl. Instrum. Methods A 560, 352 (2006)ADSGoogle Scholar
  155. 155.
    D. Vénos, A. Spalek, O. Lebeda, M. Fišer, Appl. Radiat. Isot. 63, 323 (2005)Google Scholar
  156. 156.
    S.-C. Wu, Nucl. Data Sheets 92, 893 (2001)ADSGoogle Scholar
  157. 157.
    Thermo Fisher Scientific, Inc., Thermoscientific API 120 Neutron Generators (2015)Google Scholar
  158. 158.
    D.L. Chichester, M. Lemchak, J.D. Simpson, Nucl. Instrum. Methods B 241, 753 (2005)ADSGoogle Scholar
  159. 159.
    J. Liu et al., Nucl. Instrum. Methods A 797, 260 (2015)ADSGoogle Scholar
  160. 160.
    I. Ostrovskiy, Measuring the neutrino mixing angle theta-13 with the double chooz far detector (University of Alabama Libraries, 2012)Google Scholar
  161. 161.
    R.F. Lang et al., JINST 11, P04004 (2016)Google Scholar
  162. 162.
    A.S. Chepurnov, M.B. Gromov, A.F. Shamarin, J. Phys. Conf. Ser. 675, 012008 (2016)Google Scholar
  163. 163.
    J.S. Kapustinsky et al., Nucl. Instrum. Methods A 241, 612 (1985)ADSGoogle Scholar
  164. 164.
    I.A. Belolaptikov et al., Astropart. Phys. 7, 263 (1997)ADSGoogle Scholar
  165. 165.
    D.N. Spergel, Phys. Rev. D 37, 1353 (1988)ADSGoogle Scholar
  166. 166.
    P. Gondolo, Phys. Rev. D 66, 103513 (2002)ADSGoogle Scholar
  167. 167.
    B. Morgan, A.M. Green, N.J.C. Spooner, Phys. Rev. D 71, 103507 (2005)ADSGoogle Scholar
  168. 168.
    K. Freese, P. Gondolo, H.J. Newberg, Phys. Rev. D 71, 043516 (2005)ADSGoogle Scholar
  169. 169.
    G. Jaffé, Ann. Phys. 393, 977 (1929)Google Scholar
  170. 170.
    G. Jaffé, Ann. Phys. 347, 303 (1913)Google Scholar
  171. 171.
    G. Jaffé, Radium 10, 126 (1913)Google Scholar
  172. 172.
    D.W. Swan, Proc. Phys. Soc. 85, 1297 (1965)ADSGoogle Scholar
  173. 173.
    A. Hitachi, J.A. LaVerne, T. Doke, Phys. Rev. B 46, 540 (1992)ADSGoogle Scholar
  174. 174.
    B. Rossi et al., JINST 11, C02041 (2016)Google Scholar
  175. 175.
    J. Anderson et al., J. Phys. Conf. Ser. 664, 082050 (2015)Google Scholar
  176. 176.
    D.S. Leonard et al., Nucl. Instrum. Methods A 591, 490 (2008)ADSGoogle Scholar
  177. 177.
    A. Aguilar-Arevalo et al., JINST 10, P08014 (2015)Google Scholar
  178. 178.
    B.D. LaFerriere, T.C. Maiti, I.J. Arnquist, E.W. Hoppe, Nucl. Instrum. Methods A 775, 93 (2015)ADSGoogle Scholar
  179. 179.
    J.B. Albert et al., Phys. Rev. C 92, 015503 (2015)ADSGoogle Scholar
  180. 180.
    A. Seifert et al., J. Radioanal. Nucl. Chem. 296, 915 (2012)Google Scholar
  181. 181.
    G. Zuzel et al., Nucl. Instrum. Methods A 498, 240 (2003)ADSGoogle Scholar
  182. 182.
    V. Álvarez et al., JINST 8, T01002 (2013)ADSGoogle Scholar
  183. 183.
    E.W. Hoppe et al., Nucl. Instrum. Methods A 579, 486 (2007)ADSGoogle Scholar
  184. 184.
    J. Argyriades et al., Nucl. Instrum. Methods A 622, 120 (2010)ADSGoogle Scholar
  185. 185.
    M. Misiaszek et al., Appl. Radiat. Isot. 81, 146 (2013)Google Scholar
  186. 186.
    G. Zuzel, M. Wójcik, Nucl. Instrum. Methods A 676, 140 (2012)ADSGoogle Scholar
  187. 187.
    J.W. Grate, presentation at LRT2015 (2015)Google Scholar
  188. 188.
    J. Benziger et al., Nucl. Instrum. Methods A 582, 509 (2007)ADSGoogle Scholar
  189. 189.
    B. Aharmim et al., Phys. Rev. Lett. 101, 111301 (2008)ADSGoogle Scholar
  190. 190.
    A. Nachab, AIP Conf. Proc. 897, 35 (2007) ISSN 0094-243XADSGoogle Scholar
  191. 191.
    Y. Takeuchi et al., Nucl. Instrum. Methods A 421, 334 (1999)ADSGoogle Scholar
  192. 192.
    J. Kiko, Nucl. Instrum. Methods A 460, 272 (2001)ADSGoogle Scholar
  193. 193.
    H. Simgen, G. Heusser, M. Laubenstein, G. Zuzel, Int. J. Mod. Phys. A 29, 1442009 (2014)ADSGoogle Scholar
  194. 194.
    M. Agostini et al., Eur. Phys. J. C 74, 2764 (2014)ADSGoogle Scholar
  195. 195.
    N. Abgrall et al., Adv. High En. Phys. 2014, 365432:1 (2014)Google Scholar
  196. 196.
    G. Bellini et al., Nature 512, 383 (2014)ADSGoogle Scholar
  197. 197.
    H.M. Araújo et al., Astropart. Phys. 35, 495 (2012)ADSGoogle Scholar
  198. 198.
    E. Aprile et al., Astropart. Phys. 35, 43 (2011)ADSGoogle Scholar
  199. 199.
    E. Aprile et al., J. Phys. G 40, 115201 (2013)ADSGoogle Scholar
  200. 200.
    J.C. Loach et al., AIP Conf. Proc. 1549, 8 (2013) ISSN 0094-243XADSGoogle Scholar
  201. 201.
    J. Street et al., AIP Conf. Proc. 1672, 150004 (2015) ISSN 0094-243XGoogle Scholar
  202. 202.
    M. Wójcik, W. Wlazło, G. Zuzel, G. Heusser, Nucl. Instrum. Methods A 449, 158 (2000)ADSGoogle Scholar
  203. 203.
    J. Boger et al., Nucl. Instrum. Methods A 449, 172 (2000)ADSGoogle Scholar
  204. 204.
    C.J. Martoff, P.D. Lewin, Comp. Phys. Comm. 72, 96 (1992)ADSGoogle Scholar
  205. 205.
    J.J. Back, Y.A. Ramachers, Nucl. Instrum. Methods A 586, 286 (2008)ADSGoogle Scholar
  206. 206.
    A. Empl, E.V. Hungerford, arXiv:1407.6628v2 (2014)Google Scholar
  207. 207.
    D. Mei, Z.B. Yin, L.C. Stonehill, A. Hime, Astropart. Phys. 30, 12 (2008)ADSGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • C. E. Aalseth
    • 1
  • F. Acerbi
    • 2
    • 3
  • P. Agnes
    • 4
  • I. F. M. Albuquerque
    • 5
  • T. Alexander
    • 1
  • A. Alici
    • 6
    • 7
    • 8
  • A. K. Alton
    • 9
  • P. Antonioli
    • 7
  • S. Arcelli
    • 7
    • 8
  • R. Ardito
    • 10
    • 11
  • I. J. Arnquist
    • 1
  • D. M. Asner
    • 1
  • M. Ave
    • 5
  • H. O. Back
    • 1
  • A. I. Barrado Olmedo
    • 12
  • G. Batignani
    • 13
    • 14
  • E. Bertoldo
    • 15
  • S. Bettarini
    • 13
    • 14
  • M. G. Bisogni
    • 13
    • 14
  • V. Bocci
    • 16
  • A. Bondar
    • 17
    • 18
  • G. Bonfini
    • 19
  • W. Bonivento
    • 20
  • M. Bossa
    • 21
    • 19
  • B. Bottino
    • 22
    • 23
  • M. Boulay
    • 71
  • R. Bunker
    • 1
  • S. Bussino
    • 24
    • 25
  • A. Buzulutskov
    • 17
    • 18
  • M. Cadeddu
    • 26
    • 20
  • M. Cadoni
    • 26
    • 20
  • A. Caminata
    • 23
  • N. Canci
    • 4
    • 19
  • A. Candela
    • 19
  • C. Cantini
    • 27
  • M. Caravati
    • 26
    • 20
  • M. Cariello
    • 23
  • M. Carlini
    • 19
  • M. Carpinelli
    • 28
    • 29
  • A. Castellani
    • 10
    • 11
  • S. Catalanotti
    • 30
    • 31
  • V. Cataudella
    • 30
    • 31
  • P. Cavalcante
    • 19
    • 32
  • S. Cavuoti
    • 30
    • 31
  • R. Cereseto
    • 23
  • A. Chepurnov
    • 33
  • C. Cicalò
    • 20
  • L. Cifarelli
    • 6
    • 7
    • 8
  • M. Citterio
    • 11
  • A. G. Cocco
    • 31
  • M. Colocci
    • 7
    • 8
  • S. Corgiolu
    • 35
    • 20
  • G. Covone
    • 30
    • 31
  • P. Crivelli
    • 27
  • I. D’Antone
    • 7
  • M. D’Incecco
    • 19
  • D. D’Urso
    • 28
  • M. D. Da Rocha Rolo
    • 34
  • M. Daniel
    • 12
  • S. Davini
    • 21
    • 19
    • 23
  • A. de Candia
    • 30
    • 31
  • S. De Cecco
    • 16
    • 42
  • M. De Deo
    • 19
  • G. De Filippis
    • 30
    • 31
  • G. De Guido
    • 37
    • 11
  • G. De Rosa
    • 30
    • 31
  • G. Dellacasa
    • 34
  • M. Della Valle
    • 38
    • 31
  • P. Demontis
    • 28
    • 29
    • 39
  • A. Derbin
    • 40
  • A. Devoto
    • 26
    • 20
  • F. Di Eusanio
    • 41
  • G. Di Pietro
    • 19
    • 11
  • C. Dionisi
    • 16
    • 42
  • A. Dolgov
    • 18
  • I. Dormia
    • 37
    • 11
  • S. Dussoni
    • 14
    • 13
  • A. Empl
    • 4
  • M. Fernandez Diaz
    • 12
  • A. Ferri
    • 2
    • 3
  • C. Filip
    • 44
  • G. Fiorillo
    • 30
    • 31
  • K. Fomenko
    • 45
  • D. Franco
    • 46
  • G. E. Froudakis
    • 47
  • F. Gabriele
    • 19
  • A. Gabrieli
    • 28
    • 29
  • C. Galbiati
    • 41
    • 11
  • P. Garcia Abia
    • 12
  • A. Gendotti
    • 27
  • A. Ghisi
    • 10
    • 11
  • S. Giagu
    • 16
    • 42
  • P. Giampa
    • 43
  • G. Gibertoni
    • 37
    • 11
  • C. Giganti
    • 36
  • M. A. Giorgi
    • 14
    • 13
  • G. K. Giovanetti
    • 41
  • M. L. Gligan
    • 44
  • A. Gola
    • 2
    • 3
  • O. Gorchakov
    • 45
  • A. M. Goretti
    • 19
  • F. Granato
    • 48
  • M. Grassi
    • 13
  • J. W. Grate
    • 1
  • G. Y. Grigoriev
    • 49
  • M. Gromov
    • 33
  • M. Guan
    • 50
  • M. B. B. Guerra
    • 51
  • M. Guerzoni
    • 7
  • M. Gulino
    • 52
    • 29
  • R. K. Haaland
    • 53
  • A. Hallin
    • 72
  • B. Harrop
    • 41
  • E. W. Hoppe
    • 1
  • S. Horikawa
    • 27
  • B. Hosseini
    • 20
  • D. Hughes
    • 41
  • P. Humble
    • 1
  • E. V. Hungerford
    • 4
  • An. Ianni
    • 41
    • 19
  • C. Jillings
    • 73
    • 74
  • T. N. Johnson
    • 54
  • K. Keeter
    • 51
  • C. L. Kendziora
    • 55
  • S. Kim
    • 48
  • G. Koh
    • 41
  • D. Korablev
    • 45
  • G. Korga
    • 4
    • 19
  • A. Kubankin
    • 56
  • M. Kuss
    • 13
  • M. Kuźniak
    • 71
  • M. La Commara
    • 30
    • 31
  • B. Lehnert
    • 71
  • X. Li
    • 41
  • M. Lissia
    • 20
  • G. U. Lodi
    • 37
    • 11
  • B. Loer
    • 1
  • G. Longo
    • 30
    • 31
  • P. Loverre
    • 16
    • 42
  • R. Lussana
    • 57
    • 11
  • L. Luzzi
    • 58
    • 11
  • Y. Ma
    • 50
  • A. A. Machado
    • 59
  • I. N. Machulin
    • 49
    • 60
  • A. Mandarano
    • 21
    • 19
  • L. Mapelli
    • 41
  • M. Marcante
    • 61
    • 3
    • 2
  • A. Margotti
    • 7
  • S. M. Mari
    • 24
    • 25
  • M. Mariani
    • 58
    • 11
  • J. Maricic
    • 62
  • C. J. Martoff
    • 48
  • M. Mascia
    • 35
    • 20
  • M. Mayer
    • 1
  • A. B. McDonald
    • 75
  • A. Messina
    • 16
    • 42
  • P. D. Meyers
    • 41
  • R. Milincic
    • 62
  • A. Moggi
    • 13
  • S. Moioli
    • 37
    • 11
  • J. Monroe
    • 64
  • A. Monte
    • 64
  • M. Morrocchi
    • 14
    • 13
  • B. J. Mount
    • 51
  • W. Mu
    • 27
  • V. N. Muratova
    • 40
  • S. Murphy
    • 27
  • P. Musico
    • 23
  • R. Nania
    • 6
    • 7
  • A. Navrer Agasson
    • 36
  • I. Nikulin
    • 56
  • V. Nosov
    • 17
    • 18
  • A. O. Nozdrina
    • 49
    • 60
  • N. N. Nurakhov
    • 49
  • A. Oleinik
    • 56
  • V. Oleynikov
    • 17
    • 18
  • M. Orsini
    • 19
  • F. Ortica
    • 65
    • 66
  • L. Pagani
    • 22
    • 23
  • M. Pallavicini
    • 22
    • 23
  • S. Palmas
    • 35
    • 20
  • L. Pandola
    • 29
  • E. Pantic
    • 54
  • E. Paoloni
    • 13
    • 14
  • G. Paternoster
    • 2
    • 3
  • V. Pavletcov
    • 33
  • F. Pazzona
    • 28
    • 29
  • S. Peeters
    • 76
  • K. Pelczar
    • 19
  • L. A. Pellegrini
    • 37
    • 11
  • N. Pelliccia
    • 65
    • 66
  • F. Perotti
    • 10
    • 11
  • R. Perruzza
    • 19
  • V. Pesudo
    • 12
  • C. Piemonte
    • 2
    • 3
  • F. Pilo
    • 13
  • A. Pocar
    • 64
  • T. Pollmann
    • 77
  • D. Portaluppi
    • 57
    • 11
  • D. A. Pugachev
    • 49
  • H. Qian
    • 41
  • B. Radics
    • 27
  • F. Raffaelli
    • 13
  • F. Ragusa
    • 68
    • 11
  • M. Razeti
    • 20
  • A. Razeto
    • 19
  • V. Regazzoni
    • 61
    • 3
    • 2
  • C. Regenfus
    • 27
  • B. Reinhold
    • 62
  • A. L. Renshaw
    • 4
  • M. Rescigno
    • 16
  • F. Retière
    • 43
  • Q. Riffard
    • 46
  • A. Rivetti
    • 34
  • S. Rizzardini
    • 41
  • A. Romani
    • 65
    • 65
  • L. Romero
    • 12
  • B. Rossi
    • 31
  • N. Rossi
    • 19
  • A. Rubbia
    • 27
  • D. Sablone
    • 41
    • 19
  • P. Salatino
    • 69
    • 31
  • O. Samoylov
    • 45
  • E. Sánchez García
    • 12
  • W. Sands
    • 41
  • S. Sanfilippo
    • 24
    • 25
  • M. Sant
    • 28
    • 29
  • R. Santorelli
    • 12
  • C. Savarese
    • 21
    • 19
  • E. Scapparone
    • 7
  • B. Schlitzer
    • 54
  • G. Scioli
    • 7
    • 8
  • E. Segreto
    • 59
  • A. Seifert
    • 1
  • D. A. Semenov
    • 40
  • A. Shchagin
    • 56
  • L. Shekhtman
    • 17
    • 18
  • E. Shemyakina
    • 17
    • 18
  • A. Sheshukov
    • 45
  • M. Simeone
    • 69
    • 31
  • P. N. Singh
    • 4
  • P. Skensved
    • 75
  • M. D. Skorokhvatov
    • 49
    • 60
  • O. Smirnov
    • 45
  • G. Sobrero
    • 23
  • A. Sokolov
    • 17
    • 18
  • A. Sotnikov
    • 45
  • F. Speziale
    • 29
  • R. Stainforth
    • 71
  • C. Stanford
    • 41
  • G. B. Suffritti
    • 28
    • 29
    • 39
  • Y. Suvorov
    • 70
    • 19
    • 49
  • R. Tartaglia
    • 19
  • G. Testera
    • 23
  • A. Tonazzo
    • 46
  • A. Tosi
    • 57
    • 11
  • P. Trinchese
    • 30
    • 31
  • E. V. Unzhakov
    • 40
  • A. Vacca
    • 35
    • 20
  • E. Vázquez-Jáuregui
    • 78
  • M. Verducci
    • 16
    • 42
  • T. Viant
    • 27
  • F. Villa
    • 57
    • 11
  • A. Vishneva
    • 45
  • B. Vogelaar
    • 32
  • M. Wada
    • 41
  • J. Wahl
    • 1
  • J. Walding
    • 63
  • H. Wang
    • 70
  • Y. Wang
    • 50
    • 70
  • A. W. Watson
    • 48
  • S. Westerdale
    • 71
  • R. Williams
    • 1
  • M. M. Wojcik
    • 67
  • S. Wu
    • 27
  • X. Xiang
    • 41
  • X. Xiao
    • 70
  • C. Yang
    • 50
  • Z. Ye
    • 4
  • A. Yllera de Llano
    • 12
  • F. Zappa
    • 57
    • 11
  • G. Zappalà
    • 61
    • 3
    • 2
  • C. Zhu
    • 41
  • A. Zichichi
    • 6
    • 7
    • 8
  • M. Zullo
    • 16
  • A. Zullo
    • 16
  • G. Zuzel
    • 67
  1. 1.Pacific Northwest National LaboratoryRichlandUSA
  2. 2.Fondazione Bruno KesslerPovoItaly
  3. 3.Trento Institute for Fundamental Physics and ApplicationsPovoItaly
  4. 4.Department of PhysicsUniversity of HoustonHoustonUSA
  5. 5.Instituto de FísicaUniversidade de São PauloSão PauloBrazil
  6. 6.Centro Fermi Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi”RomaItaly
  7. 7.INFN BolognaBolognaItaly
  8. 8.Physics DepartmentUniversità degli Studi di BolognaBolognaItaly
  9. 9.Physics DepartmentAugustana UniversitySioux FallsUSA
  10. 10.Civil and Environmental Engineering DepartmentPolitecnico di MilanoMilanoItaly
  11. 11.INFN MilanoMilanoItaly
  12. 12.CIEMATCentro de Investigaciones Energéticas, Medioambientales y TecnológicasMadridSpain
  13. 13.INFN PisaPisaItaly
  14. 14.Physics DepartmentUniversità degli Studi di PisaPisaItaly
  15. 15.INFN Milano BicoccaMilanoItaly
  16. 16.INFN Sezione di RomaRomaItaly
  17. 17.Budker Institute of Nuclear PhysicsNovosibirskRussia
  18. 18.Novosibirsk State UniversityNovosibirskRussia
  19. 19.INFN Laboratori Nazionali del Gran SassoAssergi (AQ)Italy
  20. 20.INFN CagliariCagliariItaly
  21. 21.Gran Sasso Science InstituteL’AquilaItaly
  22. 22.Physics DepartmentUniversità degli Studi di GenovaGenovaItaly
  23. 23.INFN GenovaGenovaItaly
  24. 24.INFN Roma TreRomaItaly
  25. 25.Mathematics and Physics DepartmentUniversità degli Studi Roma TreRomaItaly
  26. 26.Physics DepartmentUniversità degli Studi di CagliariCagliariItaly
  27. 27.Institute for Particle PhysicsETH ZürichZürichSwitzerland
  28. 28.Chemistry and Pharmacy DepartmentUniversità degli Studi di SassariSassariItaly
  29. 29.INFN Laboratori Nazionali del SudCataniaItaly
  30. 30.Physics DepartmentUniversità degli Studi “Federico II” di NapoliNapoliItaly
  31. 31.INFN NapoliNapoliItaly
  32. 32.Virginia TechBlacksburgUSA
  33. 33.Skobeltsyn Institute of Nuclear PhysicsLomonosov Moscow State UniversityMoscowRussia
  34. 34.INFN TorinoTorinoItaly
  35. 35.Department of Mechanical, Chemical, and Materials EngineeringUniversità degli StudiCagliariItaly
  36. 36.LPNHEUniversité Pierre et Marie Curie, CNRS/IN2P3, Sorbonne UniversitésParisFrance
  37. 37.Chemistry, Materials and Chemical Engineering Department “G. Natta”Politecnico di MilanoMilanoItaly
  38. 38.INAF Capodimonte Astronomical ObservatoryNapoliItaly
  39. 39.Interuniversity Consortium for Science and Technology of MaterialsFirenzeItaly
  40. 40.Saint Petersburg Nuclear Physics InstituteGatchinaRussia
  41. 41.Physics DepartmentPrinceton UniversityPrincetonUSA
  42. 42.Physics DepartmentSapienza Università di RomaRomaItaly
  43. 43.TRIUMFVancouverCanada
  44. 44.National Institute for R&D of Isotopic and Molecular TechnologiesCluj-NapocaRomania
  45. 45.Joint Institute for Nuclear ResearchDubnaRussia
  46. 46.APCUniversité Paris Diderot, CNRS/IN2P3, CEA/Irfu, Obs de Paris, USPCParisFrance
  47. 47.Department of ChemistryUniversity of CreteCreteGreece
  48. 48.Physics DepartmentTemple UniversityPhiladelphiaUSA
  49. 49.National Research Centre Kurchatov InstituteMoscowRussia
  50. 50.Institute of High Energy PhysicsBeijingChina
  51. 51.School of Natural SciencesBlack Hills State UniversitySpearfishUSA
  52. 52.Engineering and Architecture FacultyUniversità di Enna KoreEnnaItaly
  53. 53.Department of Physics and EngineeringFort Lewis CollegeDurangoUSA
  54. 54.Department of PhysicsUniversity of CaliforniaDavisUSA
  55. 55.Fermi National Accelerator LaboratoryBataviaUSA
  56. 56.Radiation Physics LaboratoryBelgorod National Research UniversityBelgorodRussia
  57. 57.Electronics, Information, and Bioengineering DepartmentPolitecnico di MilanoMilanoItaly
  58. 58.Energy DepartmentPolitecnico di MilanoMilanoItaly
  59. 59.Physics InstituteUniversidade Estadual de CampinasCampinasBrazil
  60. 60.National Research Nuclear University MEPhIMoscowRussia
  61. 61.Physics DepartmentUniversità degli Studi di TrentoPovoItaly
  62. 62.Department of Physics and AstronomyUniversity of HawaiiHonoluluUSA
  63. 63.Department of Physics, Royal HollowayUniversity of LondonSurreyUK
  64. 64.Amherst Center for Fundamental Interactions and Physics DepartmentUniversity of MassachusettsAmherstUSA
  65. 65.Chemistry, Biology and Biotechnology DepartmentUniversità degli Studi di PerugiaPerugiaItaly
  66. 66.INFN PerugiaPerugiaItaly
  67. 67.M. Smoluchowski Institute of PhysicsJagiellonian UniversityKrakowPoland
  68. 68.Physics DepartmentUniversità degli Studi di MilanoMilanoItaly
  69. 69.Chemical, Materials, and Industrial Production Engineering DepartmentUniversità degli Studi “Federico II” di NapoliNapoliItaly
  70. 70.Physics and Astronomy DepartmentUniversity of CaliforniaLos AngelesUSA
  71. 71.Department of PhysicsCarleton UniversityOttawaCanada
  72. 72.Department of PhysicsUniversity of AlbertaEdmontonCanada
  73. 73.Department of Physics and AstronomyLaurentian UniversitySudburyCanada
  74. 74.SNOLABLivelyCanada
  75. 75.Department of Physics, Engineering Physics and AstronomyQueen’s UniversityKingstonCanada
  76. 76.Physics and AstronomyUniversity of SussexBrightonUK
  77. 77.Physik DepartmentTechnische Universität MünchenMunichGermany
  78. 78.Instituto de FísicaUniversidad Nacional Autónoma de México (UNAM)MéxicoMexico

Personalised recommendations