New results on nondensely characterized integrodifferential equations with fractional order

  • C. Ravichandran
  • K. Jothimani
  • Haci Mehmet Baskonus
  • N. Valliammal
Regular Article
Part of the following topical collections:
  1. Focus Point on Modelling Complex Real-World Problems with Fractal and New Trends of Fractional Differentiation


This study reports a novel approach which deals with the coupled classes of fractional integrodifferential equations for nondensely characterized linear operators in the Banach space. Using the noncompact measure theory, we investigate the existence of the results presented.


  1. 1.
    A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations (Springer-Verlag, New York, 1983)Google Scholar
  2. 2.
    H.R. Thieme, J. Math. Anal. Appl. 152, 416 (1990)MathSciNetCrossRefGoogle Scholar
  3. 3.
    X.L. Fu, J. Math. Anal. Appl. 299, 392 (2004)MathSciNetCrossRefGoogle Scholar
  4. 4.
    H. Gu, Y. Zhou, B. Ahmad, A. Alsaedi, Electron. J. Differ. Equ. 145, 1 (2017)Google Scholar
  5. 5.
    G. Da Prato, E. Sinestrari, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 14, 285 (1987)MathSciNetGoogle Scholar
  6. 6.
    A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and applications of fractional differential equations, in North-Holland Mathematics Studies, Vol. 204 (Elsevier Science, Amsterdam, 2006)Google Scholar
  7. 7.
    Y. Zhou, F. Jiao, Nonlinear Anal. Real World Appl. 11, 4465 (2010)MathSciNetCrossRefGoogle Scholar
  8. 8.
    J. Banas, K. Goebel, Measure of noncompactness in Banach spaces, in Lecture Notes in Pure and Applied Mathematics, Vol. 60 (Marcel Dekker, New York, 1980)Google Scholar
  9. 9.
    R. Hilfer, Applications of Fractional Calculus in Physics (World Scientific, Singapore, 2000)Google Scholar
  10. 10.
    V. Lakshmikantham, S. Leela, J. Vasundhara Devi, Theory of Fractional Dynamic Systems (Cambridge Scientific Publishers, 2009)Google Scholar
  11. 11.
    I. Podlubny, Fractional Differential Equations. An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications (Academic Press, San Diego, 1999)Google Scholar
  12. 12.
    N. Abada, M. Benchohra, H. Hammouche, J. Differ. Equ. 246, 3834 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    R.P. Agarwal, J.P.C. Dos Santos, C. Cuevas, J. Abstr. Differ. Equ. Appl. 2, 26 (2012)MathSciNetGoogle Scholar
  14. 14.
    Hasan Bulut, Abstr. Appl. Anal. 2013, 203875 (2013)Google Scholar
  15. 15.
    Haci Mehmet Baskonus, Toufik Mekkaoui, Zakia Hammouch, Hasan Bulut, Entropy 17, 5771 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    Haci Mehmet Baskonus, Gulnur Yel, Hasan Bulut, AIP Conf. Proc. 1863, 560084 (2017)CrossRefGoogle Scholar
  17. 17.
    D. Kumar, J. Singh, S. Kumar, B.P. Singh, Aim Shams Eng. J. 6, 515 (2015)Google Scholar
  18. 18.
    F. Mainardi, P. Paradisi, R. Gorenflo, Probability distributions generated by fractional diffusion equations, in Econophysics: An Emerging Science, edited by J. Kertesz, I. Kondor (Kluwer, Dordrecht, 2000)Google Scholar
  19. 19.
    H.M. Srivastava, D. Kumar, J. Singh, Appl. Math. Model. 45, 192 (2017)MathSciNetCrossRefGoogle Scholar
  20. 20.
    N. Valliammal, C. Ravichandran, Ju H. Park, Math. Methods Appl. Sci. 40, 5044 (2017)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    K.D. Kucche, Y.K. Chang, C. Ravichandran, Nonlinear Stud. 23, 651 (2016)MathSciNetGoogle Scholar
  22. 22.
    G.M. Mophou, G.M. N’Guerekata, Nonlinear Anal. 71, 4665 (2009)CrossRefGoogle Scholar
  23. 23.
    Y. Zhou, Basic Theory of Fractional Differential Equations (World Scientific, Singapore, 2014)Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • C. Ravichandran
    • 1
  • K. Jothimani
    • 2
  • Haci Mehmet Baskonus
    • 3
  • N. Valliammal
    • 2
  1. 1.PG & Research Department of MathematicsKongunadu Arts & Science CollegeCoimbatoreIndia
  2. 2.Department of MathematicsSri Eshwar College of EngineeringCoimbatoreIndia
  3. 3.Department of Computer EngineeringMunzur UniversityTunceliTurkey

Personalised recommendations