Advertisement

Derivation of the statistics of quantum measurements from the action of unitary dynamics

  • Keito Hibino
  • Kazuya Fujiwara
  • Jun-Yi Wu
  • Masataka Iinuma
  • Holger F. Hofmann
Regular Article
  • 37 Downloads

Abstract.

Quantum statistics is defined by Hilbert space products between the eigenstates associated with state preparation and measurement. The same Hilbert space products also describe the dynamics generated by a Hamiltonian when one of the states is an eigenstate of energy E and the other represents an observable B . In this paper, we investigate this relation between the observable time evolution of quantum systems and the coherence of Hilbert space products in detail. It is shown that the times of arrival for a specific value of B observed with states that have finite energy uncertainties can be used to derive the Hilbert space product between eigenstates of energy E and eigenstates of the dynamical variable B . Quantum phases and interference effects appear in the form of an action that relates energy to time in the experimentally observable dynamics of localized states. We illustrate the relation between quantum coherence and dynamics by applying our analysis to several examples from quantum optics, demonstrating the possibility of explaining non-classical statistics in terms of the energy-time relations that characterize the corresponding transformation dynamics of quantum systems.

References

  1. 1.
    W.P. Schleich, J.A. Wheeler, Nature 326, 574 (1987)ADSCrossRefGoogle Scholar
  2. 2.
    C.M. Caves, C. Zhu, G.J. Milburn, W. Schleich, Phys. Rev. A 43, 3854 (1991)ADSCrossRefGoogle Scholar
  3. 3.
    C.C. Lassig, G.J. Milburn, Phys. Rev. A 48, 1854 (1993)ADSCrossRefGoogle Scholar
  4. 4.
    L. Albano, D.F. Mundarain, J. Stephany, J. Opt. B: Quantum Semiclass. Opt. 4, 319 (2002)CrossRefGoogle Scholar
  5. 5.
    F. Dell’Anno, S. De Siena, F. Illuminati, Phys. Rev. A 69, 033812 (2004)ADSCrossRefGoogle Scholar
  6. 6.
    F. Dell’Anno, S. De Siena, F. Illuminati, Phys. Rev. A 69, 033813 (2004)ADSCrossRefGoogle Scholar
  7. 7.
    D.F. Mundarain, J. Stephany, Phys. Let. A 316, 357 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    J.S. Lundeen, C. Bamber, Phys. Rev. Lett. 108, 070402 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    H.F. Hofmann, New J. Phys. 14, 043031 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    W.P. Schleich, M. Freyberger, M.S. Zubairy, Phys. Rev. A 87, 014102 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    H.F. Hofmann, Quantum Stud.: Math. Found. 1, 39 (2014)CrossRefGoogle Scholar
  12. 12.
    M.J.W. Hall, D.-A. Deckert, H.M. Wiseman, Phys. Rev. X 4, 041013 (2014)Google Scholar
  13. 13.
    H.F. Hofmann, Phys. Rev. A 96, 020101(R) (2017)ADSCrossRefGoogle Scholar
  14. 14.
    W.P. Schleich, D.M. Greenberger, D.H. Kobe, M.O. Scully, Proc. Natl. Acad. Sci. U.S.A. 110, 5374 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    J.S. Briggs, Phys. Rev. A 91, 052119 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    M. Bauer, P.A. Mello, J. Phys A: Math. Theor. 48, 185302 (2015)CrossRefGoogle Scholar
  17. 17.
    H.F. Hofmann, Phys. Rev. A 89, 042115 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    H.F. Hofmann, Eur. Phys. J. D 70, 118 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    H.F. Hofmann, K. Hibino, K. Fujiwara, J.-Y. Wu, Phys. Rev. A 94, 043809 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    H.F. Hofmann, Why interactions matter: How the laws of dynamics determine the shape of physical reality, presentation at Perimeter Institute, video available at PIRSA, http://pirsa.org/16060073/
  21. 21.
    H.F. Hofmann, New J. Phys. 13, 103009 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    H.F. Hofmann, Phys. Rev. A 91, 062123 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    J.H. Van Vleck, Proc. Natl. Acad. Sci. U.S.A. 14, 178 (1928)ADSCrossRefGoogle Scholar
  24. 24.
    C. Riek, P. Sulzer, M. Seeger, A.S. Moskalenko, G. Burkard, D.V. Seletskiy, A. Leitenstorfer, Nature 541, 376 (2017)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Graduate School of Advanced Sciences of MatterHiroshima UniversityHigashi-HiroshimaJapan

Personalised recommendations