Derivation of the statistics of quantum measurements from the action of unitary dynamics
- 22 Downloads
Abstract.
Quantum statistics is defined by Hilbert space products between the eigenstates associated with state preparation and measurement. The same Hilbert space products also describe the dynamics generated by a Hamiltonian when one of the states is an eigenstate of energy E and the other represents an observable B . In this paper, we investigate this relation between the observable time evolution of quantum systems and the coherence of Hilbert space products in detail. It is shown that the times of arrival for a specific value of B observed with states that have finite energy uncertainties can be used to derive the Hilbert space product between eigenstates of energy E and eigenstates of the dynamical variable B . Quantum phases and interference effects appear in the form of an action that relates energy to time in the experimentally observable dynamics of localized states. We illustrate the relation between quantum coherence and dynamics by applying our analysis to several examples from quantum optics, demonstrating the possibility of explaining non-classical statistics in terms of the energy-time relations that characterize the corresponding transformation dynamics of quantum systems.
References
- 1.W.P. Schleich, J.A. Wheeler, Nature 326, 574 (1987)ADSCrossRefGoogle Scholar
- 2.C.M. Caves, C. Zhu, G.J. Milburn, W. Schleich, Phys. Rev. A 43, 3854 (1991)ADSCrossRefGoogle Scholar
- 3.C.C. Lassig, G.J. Milburn, Phys. Rev. A 48, 1854 (1993)ADSCrossRefGoogle Scholar
- 4.L. Albano, D.F. Mundarain, J. Stephany, J. Opt. B: Quantum Semiclass. Opt. 4, 319 (2002)CrossRefGoogle Scholar
- 5.F. Dell’Anno, S. De Siena, F. Illuminati, Phys. Rev. A 69, 033812 (2004)ADSCrossRefGoogle Scholar
- 6.F. Dell’Anno, S. De Siena, F. Illuminati, Phys. Rev. A 69, 033813 (2004)ADSCrossRefGoogle Scholar
- 7.D.F. Mundarain, J. Stephany, Phys. Let. A 316, 357 (2006)ADSCrossRefGoogle Scholar
- 8.J.S. Lundeen, C. Bamber, Phys. Rev. Lett. 108, 070402 (2012)ADSCrossRefGoogle Scholar
- 9.H.F. Hofmann, New J. Phys. 14, 043031 (2012)ADSCrossRefGoogle Scholar
- 10.W.P. Schleich, M. Freyberger, M.S. Zubairy, Phys. Rev. A 87, 014102 (2013)ADSCrossRefGoogle Scholar
- 11.H.F. Hofmann, Quantum Stud.: Math. Found. 1, 39 (2014)CrossRefGoogle Scholar
- 12.M.J.W. Hall, D.-A. Deckert, H.M. Wiseman, Phys. Rev. X 4, 041013 (2014)Google Scholar
- 13.H.F. Hofmann, Phys. Rev. A 96, 020101(R) (2017)ADSCrossRefGoogle Scholar
- 14.W.P. Schleich, D.M. Greenberger, D.H. Kobe, M.O. Scully, Proc. Natl. Acad. Sci. U.S.A. 110, 5374 (2013)ADSCrossRefGoogle Scholar
- 15.J.S. Briggs, Phys. Rev. A 91, 052119 (2015)ADSCrossRefGoogle Scholar
- 16.M. Bauer, P.A. Mello, J. Phys A: Math. Theor. 48, 185302 (2015)CrossRefGoogle Scholar
- 17.H.F. Hofmann, Phys. Rev. A 89, 042115 (2014)ADSCrossRefGoogle Scholar
- 18.H.F. Hofmann, Eur. Phys. J. D 70, 118 (2016)ADSCrossRefGoogle Scholar
- 19.H.F. Hofmann, K. Hibino, K. Fujiwara, J.-Y. Wu, Phys. Rev. A 94, 043809 (2016)ADSCrossRefGoogle Scholar
- 20.H.F. Hofmann, Why interactions matter: How the laws of dynamics determine the shape of physical reality, presentation at Perimeter Institute, video available at PIRSA, http://pirsa.org/16060073/
- 21.H.F. Hofmann, New J. Phys. 13, 103009 (2011)ADSCrossRefGoogle Scholar
- 22.H.F. Hofmann, Phys. Rev. A 91, 062123 (2015)ADSCrossRefGoogle Scholar
- 23.J.H. Van Vleck, Proc. Natl. Acad. Sci. U.S.A. 14, 178 (1928)ADSCrossRefGoogle Scholar
- 24.C. Riek, P. Sulzer, M. Seeger, A.S. Moskalenko, G. Burkard, D.V. Seletskiy, A. Leitenstorfer, Nature 541, 376 (2017)ADSCrossRefGoogle Scholar