Bright-type and dark-type vector solitons of the (2 + 1)-dimensional spatially modulated quintic nonlinear Schrödinger equation in nonlinear optics and Bose-Einstein condensate

Regular Article
  • 26 Downloads

Abstract.

We study a (2 + 1) -dimensional N -coupled quintic nonlinear Schrödinger equation with spatially modulated nonlinearity and transverse modulation in nonlinear optics and Bose-Einstein condensate, and obtain bright-type and dark-type vector multipole as well as vortex soliton solutions. When the modulation depth q is fixed as 0 and 1, we can construct vector multipole and vortex solitons, respectively. Based on these solutions, we investigate the form and phase characteristics of vector multipole and vortex solitons.

References

  1. 1.
    D.J. Ding, D.Q. Jin, C.Q. Dai, Therm. Sci. 21, 1701 (2017)CrossRefGoogle Scholar
  2. 2.
    Y.X. Chen, F.Q. Xu, Y.L. Hu, Eur. Phys. J. Plus 132, 533 (2017)CrossRefGoogle Scholar
  3. 3.
    V.S. Bagnato, D.J. Frantzeskakis, P.G. Kevrekidis, B.A. Malomed, D. Mihalache, Rom. Rep. Phys. 67, 5 (2015)Google Scholar
  4. 4.
    G.I. Stegeman, M. Segev, Science 286, 1518 (1999)CrossRefGoogle Scholar
  5. 5.
    C.Q. Dai, D.S. Wang, L.L. Wang, Ann. Phys. 326, 2356 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    C.Q. Dai, J. Liu, Y. Fan, D.G. Yu, Nonlinear Dyn. 88, 1373 (2017)CrossRefGoogle Scholar
  7. 7.
    C.Q. Dai, Y.Y. Wang, J.F. Zhang, Opt. Lett. 35, 1437 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    C.Q. Dai, S.Q. Zhu, L.L. Wang, J.F. Zhang, EPL 92, 24005 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    H.P. Zhu, L. Chen, H.Y. Chen, Nonlinear Dyn. 85, 1913 (2016)CrossRefGoogle Scholar
  10. 10.
    D. Mihalache, Rom. Rep. Phys. 69, 403 (2017)Google Scholar
  11. 11.
    B. Malomed, L. Torner, F. Wise, D. Mihalache, J. Phys. B 49, 170502 (2016)ADSCrossRefGoogle Scholar
  12. 12.
    J.T. Li, Y. Zhu, Q.T. Liu, J.Z. Han, Y.Y. Wang, C.Q. Dai, Nonlinear Dyn. 85, 973 (2016)CrossRefGoogle Scholar
  13. 13.
    Y.Y. Wang, C.Q. Dai, G.Q. Zhou, Y. Fan, L. Chen, Nonlinear Dyn. 87, 67 (2017)CrossRefGoogle Scholar
  14. 14.
    S. Chen, F. Baronio, J.M. Soto-Crespo, P. Grelu, D. Mihalache, J. Phys. A 50, 463001 (2017)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Y. Zhu, W. Qin, J.T. Li, J.Z. Han, Y.Y. Wang, C.Q. Dai, Nonlinear Dyn. 88, 1883 (2017)CrossRefGoogle Scholar
  16. 16.
    Y.J. Xu, Nonlinear Dyn. 83, 1497 (2016)CrossRefGoogle Scholar
  17. 17.
    C.Q. Dai, Y. Fan, G.Q. Zhou, J. Zheng, L. Chen, Nonlinear Dyn. 86, 999 (2016)CrossRefGoogle Scholar
  18. 18.
    H.Y. Wu, L.H. Jiang, Nonlinear Dyn. 83, 713 (2016)CrossRefGoogle Scholar
  19. 19.
    C.Q. Dai, Y. Wang, J. Liu, Nonlinear Dyn. 84, 1157 (2016)CrossRefGoogle Scholar
  20. 20.
    P.G. Kevrekidis, D.J. Frantzeskakis, Rev. Phys. 1, 140 (2016)CrossRefGoogle Scholar
  21. 21.
    C.Q. Dai, G.Q. Zhou, R.P. Chen, X.J. Lai, J. Zheng, Nonlinear Dyn. 88, 2629 (2017)CrossRefGoogle Scholar
  22. 22.
    N.N. Akhmediev, A. Ankiewicz, Solitons: Nonlinear Pulses and Beams (Chapman and Hall, London, 1997)Google Scholar
  23. 23.
    A.W. Snyder, D.J. Mitchell, Opt. Lett. 18, 101 (1993)ADSCrossRefGoogle Scholar
  24. 24.
    B. Paredes, A. Videra, V. Murg, O. Mandel, S. Frölling, I. Cirac, G.V. Shlyapnikov, T.W. Wänsch, Nature 249, 277 (2004)ADSCrossRefGoogle Scholar
  25. 25.
    J. Belmonte-Beitia, G.F. Calvo, Phys. Lett. A 373, 448 (2009)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    K. Senthilnathan, Q. Li, K. Nakkeeran, P.K.A. Wai, Phys. Rev. A 78, 033835 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    S.L. Xu, N. Petrovic, M.R. Belic, Nonlinear Dyn. 80, 583 (2015)CrossRefGoogle Scholar
  28. 28.
    G.P. Agrawal, Nonlinear Fiber Optics (Academic, New York, 1995)Google Scholar
  29. 29.
    R. Gomez-Alcala, A. Dengra, Opt. Lett. 31, 3137 (2006)ADSCrossRefGoogle Scholar
  30. 30.
    S.V. Manakov, Sov. Phys. JETP 38, 248 (1974)ADSMathSciNetGoogle Scholar
  31. 31.
    R. Radhakrishnan, K. Aravinthan, J. Phys. A 40, 13023 (2007)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    W.P. Zhong, M.R. Belic, G. Assanto, B.A. Malomed, T.W. Huang, Phys. Rev. A 83, 043833 (2011)ADSCrossRefGoogle Scholar
  33. 33.
    J. Belmonte-Beitia, V.M. Perez-Garcia, V. Vekslerchik, V.V. Konotop, Phys. Rev. Lett. 100, 164102 (2008)ADSCrossRefGoogle Scholar
  34. 34.
    E.T. Whittaker, G.N. Watson, A Course in Modern Analysis, 4th ed. (Cambridge University Press, Cambridge, 1990)Google Scholar
  35. 35.
    M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover, New York, 1972)Google Scholar
  36. 36.
    B. Zhang, X.L. Zhang, C.Q. Dai, Nonlinear Dyn. 87, 2385 (2017)CrossRefGoogle Scholar
  37. 37.
    Y.Y. Wang, Y.P. Zhang, C.Q. Dai, Nonlinear Dyn. 83, 1331 (2016)CrossRefGoogle Scholar
  38. 38.
    Y.Y. Wang, L. Chen, C.Q. Dai, J. Zheng, Y. Fan, Nonlinear Dyn. 90, 1269 (2017)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Engineering and DesignLishui UniversityLishuiChina

Personalised recommendations