Advertisement

Electron-nuclear spin dynamics of Ga centers in GaAsN dilute nitride semiconductors probed by pump-probe spectroscopy

  • J. C. Sandoval-Santana
  • V. G. Ibarra-Sierra
  • S. Azaizia
  • H. Carrère
  • L. A. Bakaleinikov
  • V. K. Kalevich
  • E. L. Ivchenko
  • X. Marie
  • T. Amand
  • A. Balocchi
  • A. Kunold
Regular Article
  • 47 Downloads

Abstract.

We propose an experimental procedure to track the evolution of electronic and nuclear spins in Ga2+ centers in GaAsN dilute semiconductors. The method is based on a pump-probe scheme that enables to monitor the time evolution of the three components of the electronic and nuclear spin variables. In contrast to other characterization methods, as nuclear magnetic resonance, this one only needs moderate magnetic fields (\(B\approx 10\) mT), and does not require microwave irradiation. Specifically, we carry out a series of tests for different experimental conditions in order to optimize the procedure for maximum sensitivity in the measurement of the circular degree of polarization. Based on previous experimental results and the theoretical calculations presented here, we estimate that the method could yield a time resolution of about 10ps.

References

  1. 1.
    G. Lampel, Phys. Rev. Lett. 20, 491 (1968)ADSCrossRefGoogle Scholar
  2. 2.
    P.C. Maurer, G. Kucsko, C. Latta, L. Jiang, N.Y. Yao, S.D. Bennett, F. Pastawski, D. Hunger, N. Chisholm, M. Markham, D.J. Twitchen, J.I. Cirac, M.D. Lukin, Science 336, 1283 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    S.Y. Lee, M. Widmann, T. Rendler, M.W. Doherty, T.M. Babinec, S. Yang, M. Eyer, P. Siyushev, B.J. Hausmann, M. Loncar et al., Nat. Nanotechnol. 8, 487 (2013)ADSCrossRefGoogle Scholar
  4. 4.
    A. Auer, G. Burkard, Phys. Rev. B 93, 035402 (2016)ADSCrossRefGoogle Scholar
  5. 5.
    T. van der Sar, Z.H. Wang, M.S. Blok, H. Bernien, T.H. Taminiau, D.M. Toyli, D.A. Lidar, D.D. Awschalom, R. Hanson, V.V. Dobrovitski, Nature 484, 82 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    N. Mizuochi, P. Neumann, F. Rempp, J. Beck, V. Jacques, P. Siyushev, K. Nakamura, D.J. Twitchen, H. Watanabe, S. Yamasaki, F. Jelezko, J. Wrachtrup, Phys. Rev. B 80, 041201 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    J.R. Maze, J.M. Taylor, M.D. Lukin, Phys. Rev. B 78, 094303 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    J.J. Pla, F.A. Mohiyaddin, K.Y. Tan, J.P. Dehollain, R. Rahman, G. Klimeck, D.N. Jamieson, A.S. Dzurak, A. Morello, Phys. Rev. Lett. 113, 246801 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    R. Hanson, V.V. Dobrovitski, A.E. Feiguin, O. Gywat, D.D. Awschalom, Science 320, 352 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    B.E. Kane, Nature 393, 133 (1998)ADSCrossRefGoogle Scholar
  11. 11.
    J.J. Pla, K.Y. Tan, J.P. Dehollain, W.H. Lim, J.J.L. Morton, D.N. Jamieson, A.S. Dzurak, A. Morello, Nature 489, 541 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    T.D. Ladd, D. Maryenko, Y. Yamamoto, E. Abe, K.M. Itoh, Phys. Rev. B 71, 014401 (2005)ADSCrossRefGoogle Scholar
  13. 13.
    A. Laucht, R. Kalra, J.T. Muhonen, J.P. Dehollain, F.A. Mohiyaddin, F. Hudson, J.C. McCallum, D.N. Jamieson, A.S. Dzurak, A. Morello, Appl. Phys. Lett. 104, 092115 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    W. Yao, R.B. Liu, L.J. Sham, Phys. Rev. B 74, 195301 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    V. Ivády, K. Szász, A.L. Falk, P.V. Klimov, D.J. Christle, E. Janzén, I.A. Abrikosov, D.D. Awschalom, A. Gali, Phys. Rev. B 92, 115206 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    D. Simin, V.A. Soltamov, A.V. Poshakinskiy, A.N. Anisimov, R.A. Babunts, D.O. Tolmachev, E.N. Mokhov, M. Trupke, S.A. Tarasenko, A. Sperlich, P.G. Baranov, V. Dyakonov, G.V. Astakhov, Phys. Rev. X 6, 031014 (2016)Google Scholar
  17. 17.
    T. Iwasaki, F. Ishibashi, Y. Miyamoto, Y. Doi, S. Kobayashi, T. Miyazaki, K. Tahara, K.D. Jahnke, L.J. Rogers, B. Naydenov et al., Sci. Rep. 5, 12882 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    Y.N. Palyanov, I.N. Kupriyanov, Y.M. Borzdov, N.V. Surovtsev, Sci. Rep. 5, 14789 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    P. Siyushev, M.H. Metsch, A. Ijaz, J.M. Binder, M.K. Bhaskar, D.D. Sukachev, A. Sipahigil, R.E. Evans, C.T. Nguyen, M.D. Lukin, P.R. Hemmer, Y.N. Palyanov, I.N. Kupriyanov, Y.M. Borzdov, L.J. Rogers, F. Jelezko, Phys. Rev. B 96, 081201 (2017)ADSCrossRefGoogle Scholar
  20. 20.
    A. Gruber, A. Dräbenstedt, C. Tietz, L. Fleury, J. Wrachtrup, C.v. Borczyskowski, Science 276, 2012 (1997)CrossRefGoogle Scholar
  21. 21.
    K. Ramaswamy, S. Mui, S.E. Hayes, Phys. Rev. B 74, 153201 (2006)ADSCrossRefGoogle Scholar
  22. 22.
    A.S. Verhulst, I.G. Rau, Y. Yamamoto, K.M. Itoh, Phys. Rev. B 71, 235206 (2005)ADSCrossRefGoogle Scholar
  23. 23.
    E.L. Sesti, M.M. Willmering, Z.L. Ma, D.D. Wheeler, M.S. Conradi, S.E. Hayes, J. Magn. Res. 281, 172 (2017)ADSCrossRefGoogle Scholar
  24. 24.
    Y. Puttisong, D. Dagnelund, I.A. Buyanova, C.W. Tu, A. Polimeni, M. Capizzi, W.M. Chen, Appl. Phys. Lett. 99, 152109 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    X.J. Wang, Y. Puttisong, C.W. Tu, A.J. Ptak, V.K. Kalevich, A.Y. Egorov, L. Geelhaar, H. Riechert, W.M. Chen, I.A. Buyanova, Appl. Phys. Lett. 95, 241904 (2009)ADSCrossRefGoogle Scholar
  26. 26.
    J.P. King, K. Jeong, C.C. Vassiliou, C.S. Shin, R.H. Page, C.E. Avalos, H.J. Wang, A. Pines, Nat. Commun. 6, 8965 (2015)ADSCrossRefGoogle Scholar
  27. 27.
    S.A. Crooker, D.D. Awschalom, J.J. Baumberg, F. Flack, N. Samarth, Phys. Rev. B 56, 7574 (1997)ADSCrossRefGoogle Scholar
  28. 28.
    P. Liang, R.R. Hu, C. Chen, V.V. Belykh, T.Q. Jia, Z.R. Sun, D.H. Feng, D.R. Yakovlev, M. Bayer, Appl. Phys. Lett. 110, 222405 (2017)ADSCrossRefGoogle Scholar
  29. 29.
    D.V. Azamat, V.V. Belykh, D.R. Yakovlev, F. Fobbe, D.H. Feng, E. Evers, L. Jastrabik, A. Dejneka, M. Bayer, Phys. Rev. B 96, 075160 (2017)ADSCrossRefGoogle Scholar
  30. 30.
    H. Watanabe, T. Kurihara, T. Kato, K. Yamaguchi, T. Suemoto, Appl. Phys. Lett. 111, 092401 (2017)ADSCrossRefGoogle Scholar
  31. 31.
    D.H. Feng, L.F. Shan, T.Q. Jia, X.Q. Pan, H.F. Tong, L. Deng, Z.R. Sun, Z.Z. Xu, Appl. Phys. Lett. 102, 062408 (2013)ADSCrossRefGoogle Scholar
  32. 32.
    A. Kimel, A. Kirilyuk, A. Tsvetkov, R. Pisarev, T. Rasing, Nature 429, 850 (2004)ADSCrossRefGoogle Scholar
  33. 33.
    S. Loth, M. Etzkorn, C.P. Lutz, D.M. Eigler, A.J. Heinrich, Science 329, 1628 (2010)ADSCrossRefGoogle Scholar
  34. 34.
    V.G. Ibarra-Sierra, J.C. Sandoval-Santana, S. Azaizia, H. Carrère, L.A. Bakaleinikov, V.K. Kalevich, E.L. Ivchenko, X. Marie, T. Amand, A. Balocchi, A. Kunold, Phys. Rev. B 95, 195204 (2017)ADSCrossRefGoogle Scholar
  35. 35.
    S. Azaizia, H. Carrère, J. Sandoval-Santana, V. Ibarra-Sierra, V. Kalevich, E. Ivchenko, L. Bakaleinikov, X. Marie, T. Amand, A. Kunold, arXiv:1702.04129 (2017)Google Scholar
  36. 36.
    D. Paget, Phys. Rev. B 30, 931 (1984)ADSCrossRefGoogle Scholar
  37. 37.
    Y. Puttisong, X.J. Wang, I.A. Buyanova, H. Carrre, F. Zhao, A. Balocchi, X. Marie, C.W. Tu, W.M. Chen, Appl. Phys. Lett. 96, 052104 (2010)ADSCrossRefGoogle Scholar
  38. 38.
    E.L. Ivchenko, V.K. Kalevich, A.Y. Shiryaev, M.M. Afanasiev, Y. Masumoto, J. Phys.: Condens. Matter 22, 465804 (2010)ADSGoogle Scholar
  39. 39.
    C. Weisbuch, G. Lampel, Solid State Commun. 14, 141 (1974)ADSCrossRefGoogle Scholar
  40. 40.
    C.T. Nguyen, A. Balocchi, D. Lagarde, T.T. Zhang, H. Carrre, S. Mazzucato, P. Barate, E. Galopin, J. Gierak, E. Bourhis, J.C. Harmand, T. Amand, X. Marie, Appl. Phys. Lett. 103, 052403 (2013)ADSCrossRefGoogle Scholar
  41. 41.
    C. Sandoval-Santana, A. Balocchi, T. Amand, J.C. Harmand, A. Kunold, X. Marie, Phys. Rev. B 90, 115205 (2014)ADSCrossRefGoogle Scholar
  42. 42.
    E.L. Ivchenko, L.A. Bakaleinikov, V.K. Kalevich, Phys. Rev. B 91, 205202 (2015)ADSCrossRefGoogle Scholar
  43. 43.
    V.K. Kalevich, M.M. Afanasiev, A.Y. Shiryaev, A.Y. Egorov, Phys. Rev. B 85, 035205 (2012)ADSCrossRefGoogle Scholar
  44. 44.
    V.K. Kalevich, M.M. Afanasiev, A.Y. Shiryaev, A.Y. Egorov, JETP Lett. 96, 567 (2012)ADSCrossRefGoogle Scholar
  45. 45.
    Y. Puttisong, X.J. Wang, I.A. Buyanova, W.M. Chen, Phys. Rev. B 87, 125202 (2013)ADSCrossRefGoogle Scholar
  46. 46.
    Y. Puttisong, X.J. Wang, I.A. Buyanova, L. Geelhaar, H. Riechert, A.J. Ptak, C.W. Tu, W.M. Chen, Nat. Commun. 4, 1751 (2013)ADSCrossRefGoogle Scholar
  47. 47.
    R.K. Wangsness, F. Bloch, Phys. Rev. 89, 728 (1953)ADSCrossRefGoogle Scholar
  48. 48.
    A. Redfield, in Advances in Magnetic Resonance, Advances in Magnetic and Optical Resonance, Vol. 1, edited by J.S. Waugh (Academic Press, 1965) pp. 1--32,  https://doi.org/10.1016/B978-1-4832-3114-3.50007-6
  49. 49.
    G.W. Leppelmeier, E.L. Hahn, Phys. Rev. 142, 179 (1966)ADSCrossRefGoogle Scholar
  50. 50.
    J. Kowalewski, L. Maler, Nuclear Spin Relaxation in Liquids: Theory, Experiments, and Applications, in Series in Chemical Physics (CRC Press, 2006)Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • J. C. Sandoval-Santana
    • 1
  • V. G. Ibarra-Sierra
    • 1
  • S. Azaizia
    • 2
  • H. Carrère
    • 2
  • L. A. Bakaleinikov
    • 3
  • V. K. Kalevich
    • 3
  • E. L. Ivchenko
    • 3
  • X. Marie
    • 2
  • T. Amand
    • 2
  • A. Balocchi
    • 2
  • A. Kunold
    • 4
  1. 1.Departamento de FísicaUniversidad Autónoma Metropolitana IztapalapaCuidad de MéxicoMexico
  2. 2.Université de ToulouseINSA-CNRS-UPS, LPCNOToulouseFrance
  3. 3.Ioffe Physical-Technical InstituteSt. PetersburgRussia
  4. 4.Área de Física Teórica y Materia CondensadaUniversidad Autónoma Metropolitana AzcapotzalcoCuidad de MéxicoMexico

Personalised recommendations