Advertisement

Postbuckling of magneto-electro-elastic CNT-MT composite nanotubes resting on a nonlinear elastic medium in a non-uniform thermal environment

  • M. Kamali
  • M. Shamsi
  • A. R. Saidi
Regular Article

Abstract.

As a first endeavor, the effect of nonlinear elastic foundation on the postbuckling behavior of smart magneto-electro-elastic (MEE) composite nanotubes is investigated. The composite nanotube is affected by a non-uniform thermal environment. A typical MEE composite nanotube consists of microtubules (MTs) and carbon nanotubes (CNTs) with a MEE cylindrical nanoshell for smart control. It is assumed that the nanoscale layers of the system are coupled by a polymer matrix or filament network depending on the application. In addition to thermal loads, magneto-electro-mechanical loads are applied to the composite nanostructure. Length scale effects are taken into account using the nonlocal elasticity theory. The principle of virtual work and von Karman’s relations are used to derive the nonlinear governing differential equations of MEE CNT-MT nanotubes. Using Galerkin’s method, nonlinear critical buckling loads are determined. Various types of non-uniform temperature distribution in the radial direction are considered. Finally, the effects of various parameters such as the nonlinear constant of elastic medium, thermal loading factor and small scale coefficient on the postbuckling of MEE CNT-MT nanotubes are studied.

References

  1. 1.
    Z. Liu, S. Tabakman, K. Welsher, H. Dai, Nano Res. 2, 85 (2009)CrossRefGoogle Scholar
  2. 2.
    P.C. Lee, Y.C. Chiou, J.M. Wong, C.L. Peng, M.J. Shieh, Biomaterials 34, 8756 (2013)CrossRefGoogle Scholar
  3. 3.
    J. Ramón-Azcón, S. Amad Ahadian, M. Estili, X. Liang, S. Ostrovidov, H. Kaji, H. Shiku, M. Ramalingam, K. Nakajima, Y. Sakka, A. Khademhosseini, T. Matsue, Adv. Mater. 25, 4028 (2013)CrossRefGoogle Scholar
  4. 4.
    L. García-Hevia, F. Fernández, C. Grávalos, A. García, J.C. Villegas, M.L. Fanarraga, Nanomedicine 9, 1581 (2014)CrossRefGoogle Scholar
  5. 5.
    L. Rodriguez-Fernandez, R. Valiente, J. Gonzalez, J.C. Villegas, M.L. Fanarraga, ACS Nano 6, 6614 (2012)CrossRefGoogle Scholar
  6. 6.
    H. Zheng, J. Wang, S.E. Lofland et al., Science 303, 661 (2004)ADSCrossRefGoogle Scholar
  7. 7.
    X. Zhu, Y. Zhu, S. Murali, M.D. Stoller, R.S. Ruoff, ACS Nano 5, 3333 (2011)CrossRefGoogle Scholar
  8. 8.
    T. Nan, Y. Hui, M. Rinaldi, N.X. Sun, Sci. Rep. 3, 1985 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    C. Zhang, H. Ni, R. Chen, W. Zhan, B. Zhang, R. Lei, T. Xiao, Y. Zha, Microchim. Acta 182, 1811 (2015)CrossRefGoogle Scholar
  10. 10.
    M. Aydogdu, I. Elishakoff, Mech. Res. Commun. 57, 90 (2014)CrossRefGoogle Scholar
  11. 11.
    M. Danesh, A. Farajpour, M. Mohammadi, Mech. Res. Commun. 39, 23 (2012)CrossRefGoogle Scholar
  12. 12.
    C.M. Wang, Y.Y. Zhang, S.S. Ramesh, S. Kitipornchai, J. Phys. D 39, 3904 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    M. Lembo, Acta Mech. 228, 2283 (2017)MathSciNetCrossRefGoogle Scholar
  14. 14.
    F. Ebrahimi, M. Reza Barati, Eur. Phys. J. Plus 131, 238 (2016)CrossRefGoogle Scholar
  15. 15.
    F. Ebrahimi, M. Reza Barati, Eur. Phys. J. Plus 132, 88 (2017)CrossRefGoogle Scholar
  16. 16.
    H. Moosavi, M. Mohammadi, A. Farajpour, S.H. Shahidi, Physica E 44, 135 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    P. Malekzadeh, M. Shojaee, J. Vib. Control 21, 2755 (2015)MathSciNetCrossRefGoogle Scholar
  18. 18.
    A. Farajpour, M. Mohammadi, A.R. Shahidi, M. Mahzoon, Physica E 43, 1820 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    A. Farajpour, A.R. Shahidi, M. Mohammadi, M. Mahzoon, Compos. Struct. 94, 1605 (2012)CrossRefGoogle Scholar
  20. 20.
    A.M. Zenkour, Physica E 79, 87 (2016)ADSCrossRefGoogle Scholar
  21. 21.
    L.L. Ke, C. Liu, Y.S. Wang, Physica E 66, 93 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    W.J. Chen, X.P. Li, Arch. Appl. Mech. 83, 431 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    B. Akgöz, Ö. Civalek, Compos. Struct. 134, 294 (2015)CrossRefGoogle Scholar
  24. 24.
    B. Akgöz, Ö. Civalek, Acta Astron. 119, 1 (2016)CrossRefGoogle Scholar
  25. 25.
    B. Akgöz, Ö. Civalek, Struct. Eng. Mech. 48, 195 (2013)CrossRefGoogle Scholar
  26. 26.
    R. Ansari, R. Gholami, S. Sahmani, Arch. Appl. Mech. 83, 1439 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    C. Li, C.Q. Ru, A. Mioduchowski, Biochem. Biophys. Res. Commun. 349, 1145 (2006)CrossRefGoogle Scholar
  28. 28.
    Ç. Demir, Ö. Civalek, Appl. Math. Model. 37, 9355 (2013)CrossRefGoogle Scholar
  29. 29.
    C.Y. Wang, C.Q. Ru, A. Mioduchowski, Phys. Rev. E 74, 052901 (2006)ADSCrossRefGoogle Scholar
  30. 30.
    B. Akgöz, Ö. Civalek, Curr. Appl. Phys. 11, 1133 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    M. Taj, J. Zhang, J. Mech. Behav. Biomed. Mater. 30, 300 (2014)CrossRefGoogle Scholar
  32. 32.
    A. Farajpour, A. Rastgoo, M. Mohammadi, Mech. Res. Commun. 57, 18 (2014)CrossRefGoogle Scholar
  33. 33.
    Ö. Civalek, C. Demir, Appl. Math. Comput. 289, 335 (2016)MathSciNetGoogle Scholar
  34. 34.
    F. Ebrahimi, M.R. Barati, Eur. Phys. J. Plus 131, 346 (2016)CrossRefGoogle Scholar
  35. 35.
    R. Ansari, E. Hasrati, R. Gholami, F. Sadeghi, Compos. Part B: Eng. 83, 226 (2015)CrossRefGoogle Scholar
  36. 36.
    L.H. Ma, L.L. Ke, Y.Z. Wang, Y.S. Wang, Physica E 86, 253 (2017)ADSCrossRefGoogle Scholar
  37. 37.
    L.L. Ke, Y.S. Wang, J. Yang, S. Kitipornchai, Smart Mater. Struct. 23, 125036 (2014)CrossRefGoogle Scholar
  38. 38.
    L.L. Ke, Y.S. Wang, J. Yang, S. Kitipornchai, Acta Mech. Sinica 30, 516 (2014)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    Y.S. Li, Z.Y. Cai, S.Y. Shi, Compos. Struct. 111, 522 (2014)CrossRefGoogle Scholar
  40. 40.
    T. Fan, G. Zou, L. Yang, Compos. Part B: Eng. 74, 166 (2015)CrossRefGoogle Scholar
  41. 41.
    A. Farajpour, M.R.H. Yazdi, A. Rastgoo, M. Loghmani, M. Mohammadi, Compos. Struct. 140, 323 (2016)CrossRefGoogle Scholar
  42. 42.
    F. Ebrahimi, M.R. Barati, Smart Mater. Struct. 25, 105014 (2016)ADSCrossRefGoogle Scholar
  43. 43.
    F. Ebrahimi, M.R. Barati, Iran. J. Sci. Technol. Trans. Mech. Eng. 40, 243 (2016)CrossRefGoogle Scholar
  44. 44.
    A.C. Eringen, Nonlocal continuum field theories (Springer Verlag, New York, 2002)Google Scholar
  45. 45.
    R. Ansari, S. Sahmani, H. Rouhi, Phys. Lett. A 375, 1255 (2011)ADSCrossRefGoogle Scholar
  46. 46.
    A. Benzair, A. Tounsi, A. Besseghier, H. Heireche, N. Moulay, L. Boumia, J. Phys. D: Appl. Phys. 41, 225404 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Bio-systems EngineeringShahid Bahonar University of KermanKermanIran
  2. 2.Department of Mechanical EngineeringShahid Bahonar University of KermanKermanIran

Personalised recommendations