Bi-criteria travelling salesman subtour problem with time threshold

  • Jayanth Kumar Thenepalle
  • Purusotham Singamsetty
Regular Article


This paper deals with the bi-criteria travelling salesman subtour problem with time threshold (BTSSP-T), which comes from the family of the travelling salesman problem (TSP) and is NP-hard in the strong sense. The problem arises in several application domains, mainly in routing and scheduling contexts. Here, the model focuses on two criteria: total travel distance and gains attained. The BTSSP-T aims to determine a subtour that starts and ends at the same city and visits a subset of cities at a minimum travel distance with maximum gains, such that the time spent on the tour does not exceed the predefined time threshold. A zero-one integer-programming problem is adopted to formulate this model with all practical constraints, and it includes a finite set of feasible solutions (one for each tour). Two algorithms, namely, the Lexi-Search Algorithm (LSA) and the Tabu Search (TS) algorithm have been developed to solve the BTSSP-T problem. The proposed LSA implicitly enumerates the feasible patterns and provides an efficient solution with backtracking, whereas the TS, which is metaheuristic, will give the better approximate solution. A numerical example is demonstrated in order to understand the search mechanism of the LSA. Numerical experiments are carried out in the MATLAB environment, on the different benchmark instances available in the TSPLIB domain as well as on randomly generated test instances. The experimental results show that the proposed LSA works better than the TS algorithm in terms of solution quality and, computationally, both LSA and TS are competitive.


  1. 1.
    W. Krauth, M. Mezard, Europhys. Lett. 8, 3 (1989)CrossRefGoogle Scholar
  2. 2.
    R. Matai, S. Singh, M.L. Mittal, in Traveling Salesman Problem, Theory and Applications, edited by D. Davendra (InTech, 2010)Google Scholar
  3. 3.
    S.N. Daoud, Eur. Phys. J. Plus 129, 7 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    H.E. Stanley, S.V. Buldyrev, Nature 413, 6854 (2001)CrossRefGoogle Scholar
  5. 5.
    Y. Usami, M. Kitaoka, Int. J. Mod. Phys. B. 11, 13 (1997)CrossRefGoogle Scholar
  6. 6.
    R. Durbin, R. Szeliski, A. Yuille, Neural Comput. 1, 3 (1989)Google Scholar
  7. 7.
    E.L. Ulungu, J. Teghem, J. Multi-Crit. Decis. Anal. 3, 2 (1994)CrossRefGoogle Scholar
  8. 8.
    M.M. Ehrgott, M. Wiecek, Multiple Criteria Decision Analysis: State of the Art Surveys (Kluwer Academic Publishers, 2005)Google Scholar
  9. 9.
    J. Riera-Ledesma, J.J. Salazar-Gonzalez, Eur. J. Oper. Res. 160, 3 (2005)CrossRefGoogle Scholar
  10. 10.
    J.F. Berube, M. Gendreau, J.Y. Potvin, Eur. J. Oper. Res. 194, 1 (2009)CrossRefGoogle Scholar
  11. 11.
    D. Alexiou, S. Katsavounis, Oper. Res. Int. J. 15, 2 (2015)CrossRefGoogle Scholar
  12. 12.
    J.P. Saksena, S. Kumar, Oper. Res. 14, 5 (1966)CrossRefGoogle Scholar
  13. 13.
    D.H. Gensch, AIIE T. 10, 4 (1978)Google Scholar
  14. 14.
    G. Laporte, H. Mercure, Y. Norbert, RAIRO-Oper. Res. 18, 3 (1984)CrossRefGoogle Scholar
  15. 15.
    D. Feillet, P. Dejax, M. Gendreau, Transp. Sci. 39, 2 (2005)Google Scholar
  16. 16.
    P.I. Stetsyuk, Cybern. Syst. Anal. 52, 1 (2016)CrossRefGoogle Scholar
  17. 17.
    K. Mathur, S. Bansal, M.C. Puri, Optimization 28, 2 (1993)CrossRefGoogle Scholar
  18. 18.
    J.R. Current, D.A. Schilling, Eur. J. Oper. Res. 73, 1 (1994)CrossRefGoogle Scholar
  19. 19.
    M. Gen, K. Ida, Y. Li, E. Kubota, Comput. Ind. Eng. 29, 1 (1995)CrossRefGoogle Scholar
  20. 20.
    V.R. Neppalli, C.L. Chen, J.N. Gupta, Eur. J. Oper. Res. 95, 2 (1996)CrossRefGoogle Scholar
  21. 21.
    S.C. Hong, Y.B. Park, Int. J. Prod. Econ. 62, 3 (1999)CrossRefGoogle Scholar
  22. 22.
    W. Li, Finding Pareto-optimal set by merging attractors for a bi-objective traveling salesmen problem, in Evolutionary Multi-Criterion Optimization: EMO 2005, edited by (Springer, Berlin, Heidelberg, 2005)Google Scholar
  23. 23.
    Y.L. Chen, H.H. Yang, Eur. J. Oper. Res. 144, 3 (2003)CrossRefGoogle Scholar
  24. 24.
    T. Tyni, J. Ylinen, Eur. J. Oper. Res. 169, 3 (2006)CrossRefGoogle Scholar
  25. 25.
    N. Jozefowiez, F. Semet, E.G. Talbi, Comput. Oper. Res. 34, 7 (2007)CrossRefGoogle Scholar
  26. 26.
    F. Tricoire, A. Graf, W.J. Gutjahr, Comput. Oper. Res. 39, 7 (2012)Google Scholar
  27. 27.
    R. Mansini, B. Tocchella, Comput. Oper. Res. 36, 7 (2009)CrossRefGoogle Scholar
  28. 28.
    M.S. Pishvaee, R.Z. Farahani, W. Dullaert, Comput. Oper. Res. 37, 6 (2010)CrossRefGoogle Scholar
  29. 29.
    K. Ghoseiri, B. Nadjari, Appl. Soft Comput. 10, 4 (2010)Google Scholar
  30. 30.
    R. Fischer, K. Richter, in Mathematische Operations for schung und Statistik, Series Optimization 13, 2 (1982)Google Scholar
  31. 31.
    I. Sigal, Comput. Math. Math. Phys. 34, 1 (1994)MathSciNetGoogle Scholar
  32. 32.
    I.I. Melamed, I.K. Sigal, Comput. Math. Math. Phys. 37, 8 (1997)Google Scholar
  33. 33.
    M.P. Hansen, J. Heuristics 6, 3 (2000)CrossRefGoogle Scholar
  34. 34.
    L. Paquete, T. Stutzle, in International Conference on Evolutionary Multi-Criterion Optimization (Springer, Berlin, Heidelberg, 2003) pp. 479--493Google Scholar
  35. 35.
    E. Angel, E. Bampis, L. Gourves, in Metaheuristics for Multiobjective Optimization (Springer, Berlin, Heidelberg, 2004) pp. 153--176Google Scholar
  36. 36.
    C. Garcia-Martinez, O. Cordon, F. Herrera, Eur. J. Oper. Res. 180, 1 (2007)CrossRefGoogle Scholar
  37. 37.
    M. Köksalan, D.T. Öztürk, Comput. Oper. Res. 79, 304 (2017)MathSciNetCrossRefGoogle Scholar
  38. 38.
    U. Pferschy, R. Stanek, Cent. Eur. J. Oper. Res. 25, 1 (2017)CrossRefGoogle Scholar
  39. 39.
    S.N.N. Pandit, Oper. Res. 10, 5 (1962)Google Scholar
  40. 40.
    M. Sundara Murthy, Opsearch 13, 3 (1976)MathSciNetGoogle Scholar
  41. 41.
    F. Glover, ORSA J. Comput. 1, 3 (1989)CrossRefGoogle Scholar
  42. 42.
    J. Knox, Comput. Oper. Res. 21, 8 (1994)CrossRefGoogle Scholar
  43. 43.
    C. Changdar, G.S. Mahapatra, R.K. Pal, Swarm Evol. Comput. 15, 27 (2014)CrossRefGoogle Scholar
  44. 44.
    S. Sorlin, C. Solnon, in International Workshop on Graph-Based Representations in Pattern Recognition (Springer, Berlin, Heidelberg, 2005) pp. 172--182Google Scholar
  45. 45.
    S. Basu, Am. J. Oper. Res. 2, 2 (2012)Google Scholar
  46. 46.
    C.R. Reeves, Modern heuristic techniques for combinatorial problems (John Wiley & Sons, 1993)Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsSchool of Advanced Sciences, VITVelloreIndia

Personalised recommendations