Advertisement

New exact solutions for a discrete electrical lattice using the analytical methods

  • Jalil Manafian
  • Mehrdad Lakestani
Regular Article

Abstract.

This paper retrieves soliton solutions to an equation in nonlinear electrical transmission lines using the semi-inverse variational principle method (SIVPM), the \(\exp(-\Omega(\xi))\) -expansion method (EEM) and the improved \(\tan(\phi/2)\) -expansion method (ITEM), with the aid of the symbolic computation package Maple. As a result, the SIVPM, EEM and ITEM methods are successfully employed and some new exact solitary wave solutions are acquired in terms of kink-singular soliton solution, hyperbolic solution, trigonometric solution, dark and bright soliton solutions. All solutions have been verified back into their corresponding equations with the aid of the Maple package program. We depicted the physical explanation of the extracted solutions with the choice of different parameters by plotting some 2D and 3D illustrations. Finally, we show that the used methods are robust and more efficient than other methods. More importantly, the solutions found in this work can have significant applications in telecommunication systems where solitons are used to codify data.

References

  1. 1.
    E. Tala-Tebue, D.C. Tsobgni-Fozap, A. Kenfack-Jiotsa, T.C. Kofane, Eur. Phys. J. Plus 129, 136 (2014)CrossRefGoogle Scholar
  2. 2.
    W.S. Duan, Europhys. Lett. 66, 192 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    A. Sardar, S.M. Husnine, S.T.R. Rizvi, M. Younis, K. Ali, Nonlinear Dyn. 82, 1317 (2015)CrossRefGoogle Scholar
  4. 4.
    J. Yu, W.J. Zhang, X.M. Gao, Chaos, Solitons Fractals 33, 1307 (2007)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    H.-L. Zhen, B. Tian, H. Zhong, Y. Jiang, Comput. Math. Appl. 68, 579 (2014)CrossRefGoogle Scholar
  6. 6.
    E.V. Krishnan, A. Biswas, Phys. Wave Phenom. 18, 256 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    N. Naranmandula, K.X. Wang, Phys. Lett. A 336, 112 (2005)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    K. Nozaki, N. Bekki, Phys. Rev. Lett. 50, 1226 (1983)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    M. Panthee, M. Scialom, Stud. Appl. Math. 124, 229 (2010)MathSciNetCrossRefGoogle Scholar
  10. 10.
    M. Ekici, M. Mirzazadeh, A. Sonmezoglu, Q. Zhou, H. Triki, M. Zaka Ullah, S.P. Moshokoa, A. Biswas, Optik 131, 964 (2017)ADSCrossRefGoogle Scholar
  11. 11.
    J. Manafian, M. Lakestani, Eur. Phys. J. Plus 130, 61 (2015)CrossRefGoogle Scholar
  12. 12.
    J. Manafian, Eur. Phys. J. Plus 130, 255 (2015)CrossRefGoogle Scholar
  13. 13.
    A.H. Arnous, M.Z.U. Seithuti, P. Moshokoa, Q. Zhou, H. Triki, M. Mirzazadeh, A. Biswas, Nonlinear Dyn. 88, 1891 (2017)CrossRefGoogle Scholar
  14. 14.
    Q. Zhou, M. Ekici, A. Sonmezoglu, J. Manafian, S. Khaleghizadeh, M. Mirzazadeh, Optik 127, 12085 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    M. Ekici, Q. Zhou, A. Sonmezoglu, J. Manafian, M. Mirzazadeh, Optik 130, 378 (2017)ADSCrossRefGoogle Scholar
  16. 16.
    J. Manafian, Optik 127, 4222 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    J. Manafian, M. Lakestani, Opt. Quantum Electron. 48, 1 (2016)CrossRefGoogle Scholar
  18. 18.
    J. Manafian, M. Lakestani, Optik 127, 5543 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    J. Manafian, Opt. Quantum Electron. 49, 17 (2017)CrossRefGoogle Scholar
  20. 20.
    J. Manafian, M. Lakestani, Pramana - J. Phys. 130, 31 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    C.T. Sindi, J. Manafian, Math. Methods Appl. Sci. 40, 4350 (2017)MathSciNetCrossRefGoogle Scholar
  22. 22.
    R.F. Zinati, J. Manafian, Eur. Phys. J. Plus 132, 155 (2017)CrossRefGoogle Scholar
  23. 23.
    H.M. Baskonus, AIP Conf. Proc. 1798, 020018 (2017)CrossRefGoogle Scholar
  24. 24.
    H.M. Baskonus, H. Bulut, Waves Random Complex Media 26, 201 (2016)Google Scholar
  25. 25.
    Q. Zhou, Waves Random Complex Media 25, 52 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    W.X. Ma, B. Fuchssteiner, Int. J. Non-Linear Mech. 31, 329 (1996)CrossRefGoogle Scholar
  27. 27.
    W.X. Ma, J.-H. Lee, Chaos, Solitons Fractals 42, 1356 (2009)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    W.X. Ma, T. Huang, Y. Zhang, Phys. Scr. 82, 065003 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    W.X. Ma, Z. Zhu, Appl. Math. Comput. 218, 11871 (2012)MathSciNetGoogle Scholar
  30. 30.
    W.X. Ma, Sci. China Math. 55, 1769 (2012)MathSciNetCrossRefGoogle Scholar
  31. 31.
    M. Mirzazadeh, M. Eslami, Eur. Phys. J. Plus 128, 132 (2013)CrossRefGoogle Scholar
  32. 32.
    F. Tchier, A. Yusuf, A.I. Aliyu, M. Inc, Superlattices Microstruct. 107, 320 (2017)ADSCrossRefGoogle Scholar
  33. 33.
    A.M. Wazwaz, Nonlinear Dyn. 87, 1685 (2017)CrossRefGoogle Scholar
  34. 34.
    A.M. Wazwaz, S.A. El-Tantawy, Nonlinear Dyn. 87, 2457 (2017)CrossRefGoogle Scholar
  35. 35.
    D. Talati, A.M. Wazwaz, Nonlinear Dyn. 87, 1111 (2017)CrossRefGoogle Scholar
  36. 36.
    A.M. Wazwaz, Nonlinear Dyn. 88, 1727 (2017)CrossRefGoogle Scholar
  37. 37.
    F. Yu, L. Feng, L. Li, Nonlinear Dyn. 88, 1257 (2017)CrossRefGoogle Scholar
  38. 38.
    X. Geng, Y. Lv, Nonlinear Dyn. 69, 1621 (2012)CrossRefGoogle Scholar
  39. 39.
    L.-L. Wen, H.-Q. Zhang, Nonlinear Dyn. 84, 863 (2016)CrossRefGoogle Scholar
  40. 40.
    X. Lü, B. Tian, H.-Q. Zhang, T. Xu, H. Li, Nonlinear Dyn. 67, 2279 (2012)CrossRefGoogle Scholar
  41. 41.
    L. Na, Nonlinear Dyn. 82, 311 (2015)CrossRefGoogle Scholar
  42. 42.
    J.H. He, Int. J. Mod. Phys. B 20, 1141 (2006)ADSCrossRefGoogle Scholar
  43. 43.
    R. Kohl, D. Milovic, E. Zerrad, A. Biswas, J. Infrared Millim. Terahertz Waves 30, 526 (2009)CrossRefGoogle Scholar
  44. 44.
    J. Zhang, Comput. Math. Appl. 54, 1043 (2007)MathSciNetCrossRefGoogle Scholar
  45. 45.
    J. Manafian, M. Lakestani, Optik 127, 9603 (2016)ADSCrossRefGoogle Scholar
  46. 46.
    J. Manafian, M. Lakestani, A. Bekir, J. Porous Media 19, 975 (2016)CrossRefGoogle Scholar
  47. 47.
    K. Khan, M.A. Akbar, Int. J. Dyn. Syst. Differ. Equ. 5, 72 (2014)MathSciNetGoogle Scholar
  48. 48.
    S.M. Rayhanul Islam, K. Khan, M.A. Akbar, Springer Plus 4, 124 (2015)CrossRefGoogle Scholar
  49. 49.
    M.G. Hafez, Md.N. Alam, M.A. Akbar, J. King Saud Univ.-Sci. 27, 105 (2015)CrossRefGoogle Scholar
  50. 50.
    M.G. Hafez, Md. Nur Alam, M.A. Akbar, World Appl. Sci. J. 32, 2150 (2014)Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Applied Mathematics, Faculty of Mathematical SciencesUniversity of TabrizTabrizIran

Personalised recommendations