Advertisement

On the electron self-energy

  • M. D. Pollock
Regular Article
  • 37 Downloads

Abstract.

Previously, we have shown that the anti-de Sitter vacuum produced by a negative cosmological constant \(\Lambda\equiv -A\) gives rise to an effective mass term in the curved-space Dirac equation for the spinor wave function \(\psi\) due to Fock, in which the contribution from the spinorial affine connection is \({\rm i}\gamma^{j}\Gamma_{j} = m\gamma^{0}\), where \(m=\sqrt{3 A}/2\). Here, this result is used to construct an extended model of the electron interior that is divergence-free, singularity-free and locally Lorentz invariant, and yields the approximate value \(r_{\rm a}\approx 6.1 \times 10^{-26}\) cm for the radius of the charge cloud, assuming the total gravitational energy \(E\approx 8\pi r_{\rm a}^{3}A/3\kappa^{2}\) to be in the form of vacuum fluctuations and to constitute the rest-mass energy m. The model is discussed further with regard to the phenomenon of “Zitterbewegung”, while the Hamiltonian operator formalism due to Born and Jordan is consistent with the wave equation, although the gamma matrices \(\gamma_{i}\) are time dependent. The theory is effectively invariant under T, C and P, since the metric gij differs from Minkowski only by a factor \(\lesssim 10^{-30}\), and is thus compatible with the most recent experimental limits on the electric dipole moment of the electron de obtained from polar molecules, which indicate that \(\vert d_{\rm e}\vert \lesssim 10^{-28} e {\rm cm} \approx 2\times 10^{-3} r_{\rm a} e\).

References

  1. 1.
    E. Schrödinger, Sitz. Preuss. Akad. Wiss. Berlin, Phys.-Math. Kl. 24, 418 (1930)Google Scholar
  2. 2.
    M. Born, P. Jordan, Z. Phys. 34, 858 (1926)ADSCrossRefGoogle Scholar
  3. 3.
    P.A.M. Dirac, Proc. R. Soc. London A 117, 610 (1928)ADSCrossRefGoogle Scholar
  4. 4.
    P.A.M. Dirac, Proc. R. Soc. London A 118, 351 (1928)ADSCrossRefGoogle Scholar
  5. 5.
    M.D. Pollock, Acta Phys. Pol. B 41, 779 (2010) 45Google Scholar
  6. 6.
    M.D. Pollock, Found. Phys. 42, 1300 (2012)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    W. Pauli, V. Weisskopf, Helv. Phys. Acta VII, 709 (1934)Google Scholar
  8. 8.
    G. Breit, Proc. Natl. Acad. Sci. U.S.A. 14, 553 (1928)ADSCrossRefGoogle Scholar
  9. 9.
    V. Fock, Z. Phys. 55, 127 (1929)ADSCrossRefGoogle Scholar
  10. 10.
    E. Schrödinger, Ann. Phys. 79, 361 (1926)CrossRefGoogle Scholar
  11. 11.
    E. Schrödinger, Ann. Phys. 79, 489 (1926)CrossRefGoogle Scholar
  12. 12.
    E. Schrödinger, Ann. Phys. 79, 734 (1926)CrossRefGoogle Scholar
  13. 13.
    W. Heisenberg, Z. Phys. 33, 879 (1925)ADSCrossRefGoogle Scholar
  14. 14.
    M. Born, W. Heisenberg, P. Jordan, Z. Phys. 35, 557 (1926)ADSCrossRefGoogle Scholar
  15. 15.
    H. Weyl, Z. Phys. 56, 330 (1929)ADSCrossRefGoogle Scholar
  16. 16.
    S.S. Schweber, An Introduction to Relativistic Quantum Field Theory (Row, Peterson and Company, Elmsford, New York, 1961)Google Scholar
  17. 17.
    L. Landau, R. Peierls, Z. Phys. 69, 56 (1931)ADSCrossRefGoogle Scholar
  18. 18.
    L. Landau, Zh. Eksp. Teor. Fiz. 10, 718 (1940) (J. Phys. USSR 2Google Scholar
  19. 19.
    F. Hund, Z. Phys. 117, 1 (1940)ADSCrossRefGoogle Scholar
  20. 20.
    Ya.B. Zel’dovich, Pis’ma ZhETF 6, 883 (1967) (JETP Lett. 6ADSGoogle Scholar
  21. 21.
    Ya.B. Zel’dovich, Usp. Fiz. Nauk 95, 209 (1968) (Sov. Phys. Usp. 11CrossRefGoogle Scholar
  22. 22.
    M. Abraham, Theorie der Elektrizität, 5th edition (Teubner, Leipzig 1923) p. 171Google Scholar
  23. 23.
    V. Weisskopf, Z. Phys. 89, 27 (1934) 90ADSCrossRefGoogle Scholar
  24. 24.
    V.F. Weisskopf, Phys. Rev. 56, 72 (1939)ADSCrossRefGoogle Scholar
  25. 25.
    G. Lemaitre, J. Math. Phys. (M.I.T.) 4, 188 (1925)CrossRefGoogle Scholar
  26. 26.
    H.P. Robertson, Philos. Mag. 5, 835 (1928)CrossRefGoogle Scholar
  27. 27.
    V. Fock, Z. Phys. 57, 261 (1929)ADSCrossRefGoogle Scholar
  28. 28.
    A.H. Taub, Phys. Rev. 51, 512 (1937)ADSCrossRefGoogle Scholar
  29. 29.
    K. Huang, Am. J. Phys. 20, 479 (1952)ADSCrossRefGoogle Scholar
  30. 30.
    M.D. Pollock, Acta Phys. Pol. B 39, 35 (2008)ADSGoogle Scholar
  31. 31.
    M.D. Pollock, Int. J. Mod. Phys. A 7, 4149 (1992) 27ADSCrossRefGoogle Scholar
  32. 32.
    L.D. Faddeev, Teor. Mat. Fiz. 1, 3 (1969) (Theor. Math. Phys. 1CrossRefGoogle Scholar
  33. 33.
    T.D. Newton, E.P. Wigner, Rev. Mod. Phys. 21, 400 (1949)ADSCrossRefGoogle Scholar
  34. 34.
    G. Nordström, Kon. Akad. Wet. Amsterdam 20, 1076 (1918)Google Scholar
  35. 35.
    R.C. Tolman, Relativity, Thermodynamics and Cosmology (Clarendon Press, Oxford, 1934)Google Scholar
  36. 36.
    V.A. Miransky, I.A. Shovkovy, Phys. Rev. Lett. 88, 111601 (2002)ADSCrossRefGoogle Scholar
  37. 37.
    A.S. Vshivtsev, V.Ch. Zhukovskii, K.G. Klimenko, Zh. Eksp. Teor. Fiz. 111, 1921 (1997) (J. Exp. Theor. Phys. 84Google Scholar
  38. 38.
    I.E. Frolov, V.Ch. Zhukovsky, K.G. Klimenko, Phys. Rev. D 82, 076002 (2010)ADSCrossRefGoogle Scholar
  39. 39.
    E.M. Purcell, N.F. Ramsey, Phys. Rev. 78, 807 (1950)ADSCrossRefGoogle Scholar
  40. 40.
    P.G.H. Sandars, Phys. Lett. 14, 194 (1965)ADSCrossRefGoogle Scholar
  41. 41.
    G. Lüders, Ann. Phys. (New York) 2, 1 (1957)ADSCrossRefGoogle Scholar
  42. 42.
    B.C. Regan, E.D. Commins, C.J. Schmidt, D. DeMille, Phys. Rev. Lett. 88, 071805 (2002)ADSCrossRefGoogle Scholar
  43. 43.
    C.D. Panda, B.R. O’Leary, A.D. West et al., Phys. Rev. A 93, 052110 (2016)ADSCrossRefGoogle Scholar
  44. 44.
    L.D. Landau, Zh. Eksp. Teor. Fiz. 32, 405 (1957) (Sov. Phys. JETP 5Google Scholar
  45. 45.
    L. Landau, Nucl. Phys. 3, 127 (1957)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.V. A. Steklov Mathematical InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations