Advertisement

Exact traveling soliton solutions for the generalized Benjamin-Bona-Mahony equation

  • Malwe Boudoue Hubert
  • Nikolai A. Kudryashov
  • Mibaile Justin
  • Souleymanou Abbagari
  • Gambo Betchewe
  • Serge Y. Doka
Regular Article

Abstract.

In this paper, we investigate the generalized Benjamin-Bona-Mahony equation which better describes long waves with arbitrary power-law nonlinearity. As a result, we obtain exact travelling wave soliton solutions, such as anti-kink soliton solution, bright soliton solution, dark soliton solution and periodic solution. These solutions have many free parameters such that they may be used to simulate many experimental situations. The main contribution, in this work, is to not apply the computer codes for construction of exact solutions and not consider the integration constants as zero, because they give all variants for solutions.

References

  1. 1.
    R. Hirota, Phys. Rev. Lett. 27, 1192 (1971)ADSCrossRefGoogle Scholar
  2. 2.
    G. Tsigaridas, A. Fragos, I. Polyzos, M. Fakis, A. Ioannou, V. Gianneta, P. Persophonis, Chaos, Solitons Fractals 23, 1841 (2005)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    A.A. Suzo, Phys. Lett. A 335, 88 (2005)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    R.S. Banerjee, Phys. Scr. 57, 598 (1998)ADSCrossRefGoogle Scholar
  5. 5.
    Z.Y. Yan, H.Q. Zhang, Phys. Lett. A 285, 355 (2001)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    J.H. He, Phys. Scr. 76, 680 (2007)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    C.Q. Dai, W. Yue-Yue, Phys. Scr. 78, 15013 (2008)MathSciNetCrossRefGoogle Scholar
  8. 8.
    J. Hu, Chaos, Solitons Fractals 23, 391 (2005)MathSciNetCrossRefGoogle Scholar
  9. 9.
    N.A. Kudryashov, N.B. Loguinova, Commun. Nonlinear Sci. Numer. Simul. 14, 1881 (2009)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    E. Fan, Phys. Lett. A 277, 212 (2000)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    N.A. Kudryashov, Phys. Lett. A 147, 287 (1990)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Y. Chen, Z. Yan, H. Zhang, Phys. Lett. A 307, 107 (2003)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Z. Yan, Chaos, Solitons Fractals 18, 299 (2003)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    I. Dursun, D. Idris, Phys. Scr. 77, 065001 (2008)MathSciNetCrossRefGoogle Scholar
  15. 15.
    N.A. Kudryashov, Commun. Nonlinear Sci. Numer. Simul. 17, 2248 (2012)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    E.M.E. Zayed, A.H. Arnous, Chin. Phys. Lett. 29, 080203 (2012)CrossRefGoogle Scholar
  17. 17.
    N.A. Kudryashov, Mark B. Kochonov, Appl. Math. Comput. 219, 1793 (2012)MathSciNetGoogle Scholar
  18. 18.
    N.A. Kudryashov, Pavel N. Ryabov, Timofey E. Fedyanin, Alexendr A. Kutukov, Phys. Lett. A 377, 753 (2013)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    N.A. Kudryashov, Appl. Math. Comput. 219, 9245 (2013)MathSciNetGoogle Scholar
  20. 20.
    P.N. Ryabov, D.I. Sinelshchikov, M.B. Kochanov, Appl. Math. Comput. 218, 3965 (2011)MathSciNetGoogle Scholar
  21. 21.
    B.H. Malwe, B. Gambo, S.Y. Doka, T.C. Kofane, Appl. Math. Comput. 239, 299 (2014)MathSciNetGoogle Scholar
  22. 22.
    M. Wang, X. Li, J. Zhang, Phys. Lett. A 372, 417 (2008)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    I. Aslan, T. Oziz, Appl. Math. Comput. 209, 425 (2009)MathSciNetGoogle Scholar
  24. 24.
    M. Wang, J. Zhang, X. Li, Appl. Math. Comput. 206, 321 (2008)MathSciNetGoogle Scholar
  25. 25.
    I. Aslan, Phys. Lett. A 375, 4214 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    N.A. Kudryashov, Chaos, Solitons Fractals 24, 1217 (2005)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    N.A. Kudryashov, Phys. Lett. A 342, 99 (2005)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    N.K. Vitanov, Z.I. Dimitrova, H. Kantz, Appl. Math. Comput. 219, 7480 (2013)MathSciNetGoogle Scholar
  29. 29.
    N.K. Vitanov, Z.I. Dimitrova, Commun. Nonlinear Sci. Numer. Simul. 15, 2836 (2010)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    N. Taghizadeh, M. Mirzazadeh, Commun. Nonlinear Sci. Numer. Simul. 17, 1493 (2012)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    A. Biswas, M. Mirzazadeh, M. Savescu, D. Milovic, K.R. Khan, M.F. Mahmood, M. Belic, J. Mod. Opt. 61, 1550 (2014)ADSCrossRefGoogle Scholar
  32. 32.
    T.B. Benjamin, J.L. Bona, J.J. Mahony, Philos Trans. R. Soc. London Ser. A 272, 47 (1972)ADSCrossRefGoogle Scholar
  33. 33.
    H. Zhang, G.M. Wei, Y.T. Gao, Czech. J. Phys. 52, 373 (2002)ADSCrossRefGoogle Scholar
  34. 34.
    J. Meiss, W. Horton, Phys. Fluids 25, 1838 (1982)ADSCrossRefGoogle Scholar
  35. 35.
    C. Yan, J. Math. Phys. 24, 2618 (1993)ADSCrossRefGoogle Scholar
  36. 36.
    D.B. Belobo, T. Das, Commun. Nonlinear Sci. Numer. Simul. 48, 270 (2017)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    A.M. Wazwaz, Phys. Lett. A 355, 358 (2006)ADSCrossRefGoogle Scholar
  38. 38.
    A.M. Wazwaz, Phys. Lett. A 355, 358 (2006)ADSCrossRefGoogle Scholar
  39. 39.
    X.L. Yang, J.S. Tang, Z. Qiao, Pacific J. Appl. Math. 1, 99 (2008)MathSciNetGoogle Scholar
  40. 40.
    O. Guner, A. Bekir, L. Moraru, A. Biswas, Proc. Rom. Acad. A 16, 422 (2015)Google Scholar
  41. 41.
    O. Guner, J. Ocean Eng. Sci. 2, 248 (2017)CrossRefGoogle Scholar
  42. 42.
    X. Liu, L. Tian, Y. Wu, Math. Probl. Eng. 2010, 796398 (2010)Google Scholar
  43. 43.
    A. El Achab, A. Bekir, Int. J. Nonlinear Sci. 19, 40 (2015)MathSciNetGoogle Scholar
  44. 44.
    N.A. Kudryashov, Commun. Nonlinear Sci. Numer. Simul. 14, 3507 (2009)ADSMathSciNetCrossRefGoogle Scholar
  45. 45.
    N.A. Kudryashov, D.I. Sinelshchikov, Acta Appl. Math. 113, 41 (2011)MathSciNetCrossRefGoogle Scholar
  46. 46.
    N.A. Kudryashov, in Intellect (2010) pp. 364 (in Russian)Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Malwe Boudoue Hubert
    • 1
  • Nikolai A. Kudryashov
    • 2
  • Mibaile Justin
    • 3
  • Souleymanou Abbagari
    • 4
  • Gambo Betchewe
    • 1
    • 3
  • Serge Y. Doka
    • 3
    • 5
  1. 1.Department of Physics, Faculty of Sciencethe University of MarouaMarouaCameroon
  2. 2.Department of Applied MathematicsNational Research Nuclear University MEPhIMoskowRussia
  3. 3.Higher Teachers’ Training College of Marouathe University of MarouaMarouaCameroon
  4. 4.Department of Basic Science, Law and Humanities, Institute of Mines and Petroleum IndustriesUniversity of MarouaMarouaCameroon
  5. 5.Department of Physics, Faculty of Sciencethe University of NgaoundereNgaoundereCameroon

Personalised recommendations