Advertisement

Systematics of Nd cumulative fission yields for neutron-induced fission of 235U, 238U, 238Pu, 239Pu, 240Pu and 241Pu

  • G. NoguereEmail author
  • J. Tommasi
  • E. Privas
  • K. -H. Schmidt
  • D. Rochman
Regular Article

Abstract.

Systematics of cumulative fission yields of the neodymium isotopes for the thermal and fast neutron fission of 235U, 238U, 238Pu, 239Pu, 240Pu and 241Pu were obtained by combining integral results from the PROFIL experiments with theoretical calculations from the GEF code. The systematic behavior with the neodymium mass number (A = 143, 145, 146, 148, 150) deduced from the experimental trends is consistent with the smooth variation predicted by the GEF calculations, excepted for the 238U(n,f) reaction. For this system, isotopic and isotonic effects in fission-fragment shell structures are not adequately taken into account in the theoretical calculation. The obtained results also confirm the weak energy dependence of the Nd cumulative fission yields in the energy range of interest for thermal and sodium fast reactors. They suggest an energy dependency comparable to the experimental uncertainty which lies below 3%, for the 235U, 239Pu and 241Pu fissile isotopes.

References

  1. 1.
    J.M. Ruggieri, ERANOS 2.1: the international code system for GEN-IV fast reactor analysis, in Proceedings of the International Congress on Advances in Nuclear Power Plants, ICAPP06, Reno, USA (2006)Google Scholar
  2. 2.
    J. Tommasi et al., Nucl. Sci. Eng. 154, 119 (2006)CrossRefGoogle Scholar
  3. 3.
    J. Tommasi et al., Nucl. Sci. Eng. 160, 232 (2008)CrossRefGoogle Scholar
  4. 4.
    E. Privas et al., Nucl. Sci. Eng. 182, 377 (2016)CrossRefGoogle Scholar
  5. 5.
    E. Privas et al., EPJ Nucl. Sci. Technol. 2, 32 (2016)CrossRefGoogle Scholar
  6. 6.
    K.-H. Schmidt et al., Nucl. Data Sheets 131, 107 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    C. De Saint Jean, to be published in Nucl. Data SheetsGoogle Scholar
  8. 8.
    N. Terranova, Covariance evaluation for nuclear data of interest to the reactivity loss estimation of the Jules Horowitz material testing reactor, PhD Thesis, Aix-Marseille University, France (2016)Google Scholar
  9. 9.
    A. Santamarina, The JEFF-3.1.1 Nuclear Data Library, Nuclear Energy Agency, JEFF report 22 (2009)Google Scholar
  10. 10.
    M.B. Chadwick et al., Nucl. Data Sheets 112, 2887 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    R.W. Mills, Fission product yield evaluation, PhD Thesis, University of Birmingham, UK (1995)Google Scholar
  12. 12.
    J.-M. Ruggieri, JEFF-3.1 nuclear data validation for fast reactor physics, in Proceedings of the International Conference on Physics and Technology of Reactors and Applications, PHYTRA, Marakech, Morocco (2007)Google Scholar
  13. 13.
    G. Perret et al., EPJ Web of Conferences 42, 05002 (2013)CrossRefGoogle Scholar
  14. 14.
    G. Perret et al., EPJ Web of Conferences 111, 11006 (2016)CrossRefGoogle Scholar
  15. 15.
    G. Rimpault, Preliminary results on FCA-IX fission chambers analysis, Expert Group on Integral Experiments for Minor Actinide Management, EGIEMAM-II (2016)Google Scholar
  16. 16.
    M. Robin, The importance of fission product nuclear data in burnup determination, in Proceedings of the International Conference on Chemical and Nuclear Data, Canterbury, UK (1973)Google Scholar
  17. 17.
    L. Koch, Radiochim. Acta 29, 61 (1981)CrossRefGoogle Scholar
  18. 18.
    E. Pellereau et al., Phys. Rev. C 95, 054603 (2017)ADSCrossRefGoogle Scholar
  19. 19.
    O. Leray et al., EPJ Web of Conferences 146, 09023 (2017)CrossRefGoogle Scholar
  20. 20.
    P. Archier et al., Nucl. Data Sheets 118, 488 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    R.E. MacFarlane, A.C. Kahler, Nucl. Data Sheets 111, 2739 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    H.C. Britt, Review of the status of cumulative fission yields from ^239Pu(n,f) of interest to nuclear forensics, Laurence Livermore National Laboratory, Report LLNL-TR-459777 (2010)Google Scholar
  23. 23.
    W.J. Maeck, The correlation of ^235U thermal and fast reactor fission yields with neutron energy, Exxon Nuclear Idaho Company, Inc. Report ENICO-1065 (1980)Google Scholar
  24. 24.
    W.J. Maeck, The correlation pf ^239Pu thermal and fast reactor fission yields with neutron energy, Exxon Nuclear Idaho Company, Inc., Report ENICO-1099 (1981)Google Scholar
  25. 25.
    P. Leconte, J.-P. Hudelot, M. Antony, Nucl. Sci. Eng. 172, 208 (2012)CrossRefGoogle Scholar
  26. 26.
    O. Litaize, O. Serot, L. Berge, Eur. Phys. J. A 51, 177 (2015)ADSCrossRefGoogle Scholar
  27. 27.
    P. Möller, C. Schmitt, Eur. Phys. J. A 53, 7 (2017)ADSCrossRefGoogle Scholar
  28. 28.
    A.J. Sierk, Phys. Rev. C 96, 034603 (2017)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • G. Noguere
    • 1
    Email author
  • J. Tommasi
    • 1
  • E. Privas
    • 1
  • K. -H. Schmidt
    • 2
  • D. Rochman
    • 3
  1. 1.CEADEN CadaracheSaint Paul Les DuranceFrance
  2. 2.Centre d’Etudes Nucléaires Bordeaux GradignanCNRS/IN2P3GradignanFrance
  3. 3.Paul Scherrer InstitutVilligenSwitzerland

Personalised recommendations