Skip to main content
Log in

Sagnac delay in the Kerr-dS spacetime: Implications for Mach’s principle

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

Relativistic twin paradox can have important implications for Mach’s principle. It has been recently argued that the behavior of the time asynchrony (different aging of twins) between two flying clocks along closed loops can be attributed to the existence of an absolute spacetime, which makes Mach’s principle unfeasible. In this paper, we shall revisit, and support, this argument from a different viewpoint using the Sagnac delay. This is possible since the above time asynchrony is known to be exactly the same as the Sagnac delay between two circumnavigating light rays re-uniting at the orbiting source/receiver. We shall calculate the effect of mass M and cosmological constant \( \Lambda\) on the delay in the general case of Kerr-de Sitter spacetime. It follows that, in the independent limits \( M\rightarrow 0\), spin \( a\rightarrow 0\) and \( \Lambda \rightarrow 0\), while the Kerr-dS metric reduces to Minkowski metric, the clocks need not tick in consonance since there will still appear a non-zero observable Sagnac delay. While we do not measure spacetime itself, we do measure the Sagnac effect, which signifies an absolute substantive Minkowski spacetime instead of a void. We shall demonstrate a completely different limiting behavior of Sagnac delay, heretofore unknown, between the case of non-geodesic and geodesic source/observer motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.I.M. Lichtenegger, L. Iorio, Eur. Phys. J. Plus 126, 129 (2011)

    Article  Google Scholar 

  2. R. Schlegel, Nature (London) 242, 180 (1973)

    Article  ADS  Google Scholar 

  3. J.C. Hafele, R.E. Keating, Science 177, 166 (1972)

    Article  ADS  Google Scholar 

  4. J.C. Hafele, R.E. Keating, Science 177, 168 (1972)

    Article  ADS  Google Scholar 

  5. G. Sagnac, C. R. Acad. Sci. Paris 157, 708 (1913)

    Google Scholar 

  6. A. Bhadra, T.B. Nayak, K.K. Nandi, Phys. Lett. A 295, 1 (2002)

    Article  ADS  Google Scholar 

  7. K.K. Nandi, P.M. Alsing, J.C. Evans, T.B. Nayak, Phys. Rev. D 63, 084027 (2001)

    Article  ADS  Google Scholar 

  8. A. Ashtekar, A. Magnon, J. Math. Phys. 16, 343 (1975)

    Article  ADS  Google Scholar 

  9. A. Tartaglia, Phys. Rev. D 58, 064009 (1998)

    Article  ADS  Google Scholar 

  10. J.M. Cohen, B. Mashhoon, Phys. Lett. A 181, 353 (1993)

    Article  ADS  Google Scholar 

  11. A. Einstein, The Meaning of Relativity (Princeton U.P., Princeton, NJ, 1955) pp. 55--63

  12. B.F. Schutz, A First Course in General Relativity (Cambridge U.P., New York, 1985) p. 298

  13. T.A. Weber, Am. J. Phys. 65, 486 (1997)

    Article  ADS  Google Scholar 

  14. L.D. Landau, E.M. Lifshitz, The Classical Theory of Fields, 4th ed. (Pergamon, New York, 1975) pp. 234--237

  15. B. Carter, in Les Astres Occlus, edited by C. DeWitt, B. DeWitt (Gordon & Breach, New York, 1973)

  16. J.A.R. Cembranos, A. de la Cruz-Dombriz, P. Jimeno Romero, Int. J. Geom. Methods Mod. Phys. 11, 1450001 (2014)

    Article  MathSciNet  Google Scholar 

  17. D. Pérez, G.E. Romero, S.E. Perez Bergliaffa, Astron. Astrophys. 551, A4 (2013)

    Article  Google Scholar 

  18. Y. Aharonov, D. Bohm, Phys. Rev. 115, 485 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  19. M.D. Semon, Found. Phys. 12, 49 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  20. M.L. Ruggiero, Nuovo Cimento B 119, 893 (2004)

    ADS  Google Scholar 

  21. J.J. Sakurai, Phys. Rev. D 21, 2993 (1980)

    Article  ADS  Google Scholar 

  22. K.K. Nandi, Y.-Z. Zhang, Phys. Rev. D 66, 063005 (2002)

    Article  ADS  Google Scholar 

  23. P.M. Alsing, J.C. Evans, K.K. Nandi, Gen. Rel. Grav. 33, 1459 (2001)

    Article  ADS  Google Scholar 

  24. L. Iorio, M.L. Ruggiero, JCAP 03, 024 (2009)

    Article  ADS  Google Scholar 

  25. W. Rindler, M. Ishak, Phys. Rev. D 76, 043006 (2007)

    Article  ADS  Google Scholar 

  26. A. Bhattacharya, G.M. Garipova, E. Laserra, A. Bhadra, K.K. Nandi, JCAP 02, 028 (2011)

    Article  ADS  Google Scholar 

  27. A. Bhattacharya, A. Panchenko, M. Scalia, C. Cattani, K.K. Nandi, JCAP 09, 004 (2010)

    Article  ADS  Google Scholar 

  28. C. Cattani, M. Scalia, E. Laserra, I. Bochicchio, K.K. Nandi, Phys. Rev. D 87, 047503 (2013)

    Article  ADS  Google Scholar 

  29. M. Sereno, P. Jetzer, Phys. Rev. D 73, 063004 (2006)

    Article  ADS  Google Scholar 

  30. V. Kagramanova, J. Kunz, C. Lämmerzahl, Phys. Lett. B 634, 465 (2006)

    Article  ADS  Google Scholar 

  31. C. Chakraborty, P. Majumdar, Class. Quantum Grav. 31, 075006 (2014)

    Article  ADS  Google Scholar 

  32. V. Kagramanova, J. Kunz, E. Hackmann, C. Lämmerzahl, Phys. Rev. D 81, 124044 (2010)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. N. Izmailov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimov, R.K., Izmailov, R.N., Garipova, G.M. et al. Sagnac delay in the Kerr-dS spacetime: Implications for Mach’s principle. Eur. Phys. J. Plus 133, 44 (2018). https://doi.org/10.1140/epjp/i2018-11919-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2018-11919-x

Navigation