Abstract.
In this paper, we approximate the solution of fractional differential equations with delay using a new approach based on artificial neural networks. We consider fractional differential equations of variable order with the Mittag-Leffler kernel in the Liouville-Caputo sense. With this new neural network approach, an approximate solution of the fractional delay differential equation is obtained. Synaptic weights are optimized using the Levenberg-Marquardt algorithm. The neural network effectiveness and applicability were validated by solving different types of fractional delay differential equations, linear systems with delay, nonlinear systems with delay and a system of differential equations, for instance, the Newton-Leipnik oscillator. The solution of the neural network was compared with the analytical solutions and the numerical simulations obtained through the Adams-Bashforth-Moulton method. To show the effectiveness of the proposed neural network, different performance indices were calculated.
Similar content being viewed by others
References
D. Baleanu, K. Diethelm, E. Scalas, J.J. Trujillo, Fractional Calculus Models and Numerical Methods, in Series on Complexity, Nonlinearity and Chaos (World Scientific, 2012)
I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and some of Their Applications (Academic Press, San Diego, CA, USA, 1999)
X.J. Yang, J.T. Machado, D. Baleanu, Fractals 25, 1740006 (2017)
Y. Zhang, A. Kumar, S. Kumar, D. Baleanu, X.J. Yang, J. Nonlinear Sci. Appl. 9, 5821 (2016)
X.J. Yang, F. Gao, H.M. Srivastava, Comput. Math. Appl. 73, 203 (2017)
X.H. Zhao, Y. Zhang, D. Zhao, X. Yang, Fundam. Inf. 151, 419 (2017)
X.J. Yang, J.T. Machado, D. Baleanu, Rom. Rep. Phys. 69, 115 (2017)
X.J. Yang, F. Gao, H.M. Srivastava, Rom. Rep. Phys. 69, 113 (2017)
Y.M. Guo, Y. Zhao, Y.M. Zhou, Z.B. Xiao, X.J. Yang, Math. Methods Appl. Sci. 40, 6127 (2015)
X.J. Yang, Therm. Sci. 21, 317 (2017)
M. Ma, D. Baleanu, Y.S. Gasimov, X.J. Yang, Rom. J. Phys. 61, 784 (2016)
K.M. Owolabi, A. Atangana, Chaos, Solitons Fractals 99, 171 (2017)
K.M. Owolabi, A. Atangana, J. Comput. Nonlinear Dyn. 12, 031010 (2017)
J.D. Munkhammar, Riemann-Liouville fractional derivatives and the Taylor-Riemann series, UUDM project report, 7, 1-18 (2004)
C. Li, D. Qian, Y. Chen, Discr. Dyn. Nat. Soc. 2011, 562494 (2011)
M. Caputo, M. Fabrizio, Progr. Fract. Differ. Appl. 1, 73 (2015)
A. Atangana, D. Baleanu, Therm. Sci. 20, 763 (2016)
S.G. Samko, B. Ross, Integral Transform. Spec. Funct. 1, 277 (1993)
A. Atangana, J. Comput. Phys. 293, 104 (2015)
R. Almeida, Numer. Funct. Anal. Optim. 38, 1 (2017)
D. Valério, J.S. Da Costa, Signal Process. 91, 470 (2011)
C. Li, G. Chen, Physica A 341, 55 (2004)
A.H. Bhrawy, M.A. Zaky, Comput. Math. Appl. 73, 1100 (2017)
A.H. Bhrawy, M.A. Zaky, Appl. Numer. Math. 111, 197 (2017)
H.G. Sun, W. Chen, W. Wei, Y.Q. Chen, Eur. Phys. J. ST 193, 185 (2011)
G.R.J. Cooper, D.R. Cowan, Comput. Geosci. 30, 455 (2004)
B.P. Moghaddam, J.A.T. Machado, Comput. Math. Appl. 73, 1262 (2017)
A. Atangana, J.F. Botha, Bound. Value Probl. 2013, 53 (2013)
S. Yaghoobi, B.P. Moghaddam, K. Ivaz, Nonlinear Dyn. 87, 815 (2017)
A. Atangana, R.T. Alqahtani, J. Comput. Theor. Nanosci. 13, 2710 (2016)
B.P. Moghaddam, S. Yaghoobi, J.T. Machado, J. Comput. Nonlinear Dyn. 11, 061001 (2016)
J.K. Hale, S.M.V. Lunel, Introduction to functional differential equations (Springer Science & Business Media, 2013)
V. Volterra, J. Math. Pures Appl. 7, 249 (1928)
K.L. Cooke, J.A. Yorke, Equations modelling population growth, economic growth, and gonorrhea epidemiology, in Ordinary Differential Equations, edited by L. Weiss (Academic Press, New York, 1972)
W.C. Chen, Chaos, Solitons Fractals 36, 1305 (2008)
M.P. Lazarevic, Mech. Res. Commun. 33, 269 (2006)
S. Bhalekar, V. Daftardar-Gejji, D. Baleanu, R. Magin, Comput. Math. Appl. 61, 1355 (2011)
A. Lin, Y. Ren, N. Xia, Math. Comput. Model. 51, 413 (2010)
D. Baleanu, T. Maaraba, F. Jarad, J. Phys. 41, 315403 (2008)
S. Abbas, R.P. Agarwal, M. Benchohra, Nonlinear Anal. Hybrid Syst. 4, 818 (2010)
Z.M. Odibat, S. Momani, J. Appl. Math. Inf. 26, 15 (2008)
S. Irandoust-Pakchin, M. Javidi, H. Kheiri, Comput. Math. Math. Phys. 56, 116 (2016)
Y. Zhang, C. Cattani, X.J. Yang, Entropy 17, 6753 (2015)
A. Saadatmandi, M. Dehghan, Comput. Math. Appl. 59, 1326 (2010)
S. Ma, Y. Xu, W. Yue, J. Appl. Math. 2012, 417942 (2012)
U. Saeed, M.U. Rehman, J. Differ. Equ. 2014, 359093 (2014)
Y. Yang, Y. Huang, Adv. Math. Phys. 2013, 821327 (2013)
M.M. Khader, A.S. Hendy, Int. J. Pure Appl. Math. 74, 287 (2012)
Z. Wang, J. Appl. Math. 2013, 256071 (2013)
Z. Li, Y. Yan, N.J. Ford, Appl. Numer. Math. 114, 201 (2017)
B.P. Moghaddam, Z.S. Mostaghim, J. Taibah Univ. Sci. 7, 120 (2013)
B.P. Moghaddam, S. Yaghoobi, J.T. Machado, J. Comput. Nonlinear Dyn. 11, 061001 (2016)
H.M. Romero-Ugalde, C. Corbier, J. Dyn. Syst. Meas. Control 138, 051001 (2016)
G. Cybenko, Math. Control, Signals Syst. 2, 303 (1989)
G.B. Huang, Q.Y. Zhu, C.K. Siew, Neurocomputing 70, 489 (2006)
H.M. Romero-Ugalde, J.C. Carmona, J. Reyes-Reyes, V.M. Alvarado, C. Corbier, Neural Comput. Appl. 26, 171 (2015)
H.M. Romero-Ugalde, J.C. Carmona, V.M. Alvarado, J. Reyes-Reyes, Neurocomputing 101, 170 (2013)
T. Das, I.N. Kar, IEEE Trans. Control Syst. Technol. 14, 501 (2006)
M. Chen, S.S. Ge, B.V.E. How, IEEE Trans. Neural Netw. 21, 796 (2010)
A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional neural networks, in Advances in neural information processing systems, Vol. 1 (2012) pp. 1097--1105
D. Ciregan, U. Meier, J. Schmidhuber, Multi-column deep neural networks for image classification, in Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference (2012) pp. 3642--3649
H. Qu, X. Liu, Adv. Math. Phys. 2015, 439526 (2015)
A. Jafarian, M. Mokhtarpour, D. Baleanu, Neural Comput. Appl. 28, 765 (2017)
M.A.Z. Raja, M.A. Manzar, R. Samar, Appl. Math. Model. 39, 3075 (2015)
M. Pakdaman, A. Ahmadian, S. Effati, S. Salahshour, D. Baleanu, Appl. Math. Comput. 293, 81 (2017)
B.P. Moghaddam, Z.S. Mostaghim, J. Taibah Univ. Sci. 7, 120 (2013)
L. Tavernini, Continuous-Time modeling and simulation (Gordon and Breach, Amsterdam, 1996)
I. Petras, Fractional-order nonlinear systems: modeling, analysis and simulation (Springer Science & Business Media, 2011)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Zúñiga-Aguilar, C.J., Coronel-Escamilla, A., Gómez-Aguilar, J.F. et al. New numerical approximation for solving fractional delay differential equations of variable order using artificial neural networks. Eur. Phys. J. Plus 133, 75 (2018). https://doi.org/10.1140/epjp/i2018-11917-0
Received:
Accepted:
Published:
DOI: https://doi.org/10.1140/epjp/i2018-11917-0