Skip to main content
Log in

New numerical approximation for solving fractional delay differential equations of variable order using artificial neural networks

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

In this paper, we approximate the solution of fractional differential equations with delay using a new approach based on artificial neural networks. We consider fractional differential equations of variable order with the Mittag-Leffler kernel in the Liouville-Caputo sense. With this new neural network approach, an approximate solution of the fractional delay differential equation is obtained. Synaptic weights are optimized using the Levenberg-Marquardt algorithm. The neural network effectiveness and applicability were validated by solving different types of fractional delay differential equations, linear systems with delay, nonlinear systems with delay and a system of differential equations, for instance, the Newton-Leipnik oscillator. The solution of the neural network was compared with the analytical solutions and the numerical simulations obtained through the Adams-Bashforth-Moulton method. To show the effectiveness of the proposed neural network, different performance indices were calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Baleanu, K. Diethelm, E. Scalas, J.J. Trujillo, Fractional Calculus Models and Numerical Methods, in Series on Complexity, Nonlinearity and Chaos (World Scientific, 2012)

  2. I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and some of Their Applications (Academic Press, San Diego, CA, USA, 1999)

  3. X.J. Yang, J.T. Machado, D. Baleanu, Fractals 25, 1740006 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  4. Y. Zhang, A. Kumar, S. Kumar, D. Baleanu, X.J. Yang, J. Nonlinear Sci. Appl. 9, 5821 (2016)

    Article  MathSciNet  Google Scholar 

  5. X.J. Yang, F. Gao, H.M. Srivastava, Comput. Math. Appl. 73, 203 (2017)

    Article  MathSciNet  Google Scholar 

  6. X.H. Zhao, Y. Zhang, D. Zhao, X. Yang, Fundam. Inf. 151, 419 (2017)

    Article  Google Scholar 

  7. X.J. Yang, J.T. Machado, D. Baleanu, Rom. Rep. Phys. 69, 115 (2017)

    Google Scholar 

  8. X.J. Yang, F. Gao, H.M. Srivastava, Rom. Rep. Phys. 69, 113 (2017)

    Google Scholar 

  9. Y.M. Guo, Y. Zhao, Y.M. Zhou, Z.B. Xiao, X.J. Yang, Math. Methods Appl. Sci. 40, 6127 (2015)

    Article  Google Scholar 

  10. X.J. Yang, Therm. Sci. 21, 317 (2017)

    Article  Google Scholar 

  11. M. Ma, D. Baleanu, Y.S. Gasimov, X.J. Yang, Rom. J. Phys. 61, 784 (2016)

    Google Scholar 

  12. K.M. Owolabi, A. Atangana, Chaos, Solitons Fractals 99, 171 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  13. K.M. Owolabi, A. Atangana, J. Comput. Nonlinear Dyn. 12, 031010 (2017)

    Article  Google Scholar 

  14. J.D. Munkhammar, Riemann-Liouville fractional derivatives and the Taylor-Riemann series, UUDM project report, 7, 1-18 (2004)

  15. C. Li, D. Qian, Y. Chen, Discr. Dyn. Nat. Soc. 2011, 562494 (2011)

    Google Scholar 

  16. M. Caputo, M. Fabrizio, Progr. Fract. Differ. Appl. 1, 73 (2015)

    Google Scholar 

  17. A. Atangana, D. Baleanu, Therm. Sci. 20, 763 (2016)

    Article  Google Scholar 

  18. S.G. Samko, B. Ross, Integral Transform. Spec. Funct. 1, 277 (1993)

    Article  MathSciNet  Google Scholar 

  19. A. Atangana, J. Comput. Phys. 293, 104 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  20. R. Almeida, Numer. Funct. Anal. Optim. 38, 1 (2017)

    Article  MathSciNet  Google Scholar 

  21. D. Valério, J.S. Da Costa, Signal Process. 91, 470 (2011)

    Article  Google Scholar 

  22. C. Li, G. Chen, Physica A 341, 55 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  23. A.H. Bhrawy, M.A. Zaky, Comput. Math. Appl. 73, 1100 (2017)

    Article  MathSciNet  Google Scholar 

  24. A.H. Bhrawy, M.A. Zaky, Appl. Numer. Math. 111, 197 (2017)

    Article  MathSciNet  Google Scholar 

  25. H.G. Sun, W. Chen, W. Wei, Y.Q. Chen, Eur. Phys. J. ST 193, 185 (2011)

    Article  Google Scholar 

  26. G.R.J. Cooper, D.R. Cowan, Comput. Geosci. 30, 455 (2004)

    Article  ADS  Google Scholar 

  27. B.P. Moghaddam, J.A.T. Machado, Comput. Math. Appl. 73, 1262 (2017)

    Article  MathSciNet  Google Scholar 

  28. A. Atangana, J.F. Botha, Bound. Value Probl. 2013, 53 (2013)

    Article  Google Scholar 

  29. S. Yaghoobi, B.P. Moghaddam, K. Ivaz, Nonlinear Dyn. 87, 815 (2017)

    Article  Google Scholar 

  30. A. Atangana, R.T. Alqahtani, J. Comput. Theor. Nanosci. 13, 2710 (2016)

    Article  Google Scholar 

  31. B.P. Moghaddam, S. Yaghoobi, J.T. Machado, J. Comput. Nonlinear Dyn. 11, 061001 (2016)

    Article  Google Scholar 

  32. J.K. Hale, S.M.V. Lunel, Introduction to functional differential equations (Springer Science & Business Media, 2013)

  33. V. Volterra, J. Math. Pures Appl. 7, 249 (1928)

    Google Scholar 

  34. K.L. Cooke, J.A. Yorke, Equations modelling population growth, economic growth, and gonorrhea epidemiology, in Ordinary Differential Equations, edited by L. Weiss (Academic Press, New York, 1972)

  35. W.C. Chen, Chaos, Solitons Fractals 36, 1305 (2008)

    Article  ADS  Google Scholar 

  36. M.P. Lazarevic, Mech. Res. Commun. 33, 269 (2006)

    Article  Google Scholar 

  37. S. Bhalekar, V. Daftardar-Gejji, D. Baleanu, R. Magin, Comput. Math. Appl. 61, 1355 (2011)

    Article  MathSciNet  Google Scholar 

  38. A. Lin, Y. Ren, N. Xia, Math. Comput. Model. 51, 413 (2010)

    Article  Google Scholar 

  39. D. Baleanu, T. Maaraba, F. Jarad, J. Phys. 41, 315403 (2008)

    MathSciNet  Google Scholar 

  40. S. Abbas, R.P. Agarwal, M. Benchohra, Nonlinear Anal. Hybrid Syst. 4, 818 (2010)

    Article  MathSciNet  Google Scholar 

  41. Z.M. Odibat, S. Momani, J. Appl. Math. Inf. 26, 15 (2008)

    Google Scholar 

  42. S. Irandoust-Pakchin, M. Javidi, H. Kheiri, Comput. Math. Math. Phys. 56, 116 (2016)

    Article  MathSciNet  Google Scholar 

  43. Y. Zhang, C. Cattani, X.J. Yang, Entropy 17, 6753 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  44. A. Saadatmandi, M. Dehghan, Comput. Math. Appl. 59, 1326 (2010)

    Article  MathSciNet  Google Scholar 

  45. S. Ma, Y. Xu, W. Yue, J. Appl. Math. 2012, 417942 (2012)

    Google Scholar 

  46. U. Saeed, M.U. Rehman, J. Differ. Equ. 2014, 359093 (2014)

    Google Scholar 

  47. Y. Yang, Y. Huang, Adv. Math. Phys. 2013, 821327 (2013)

    Google Scholar 

  48. M.M. Khader, A.S. Hendy, Int. J. Pure Appl. Math. 74, 287 (2012)

    Google Scholar 

  49. Z. Wang, J. Appl. Math. 2013, 256071 (2013)

    Google Scholar 

  50. Z. Li, Y. Yan, N.J. Ford, Appl. Numer. Math. 114, 201 (2017)

    Article  MathSciNet  Google Scholar 

  51. B.P. Moghaddam, Z.S. Mostaghim, J. Taibah Univ. Sci. 7, 120 (2013)

    Article  Google Scholar 

  52. B.P. Moghaddam, S. Yaghoobi, J.T. Machado, J. Comput. Nonlinear Dyn. 11, 061001 (2016)

    Article  Google Scholar 

  53. H.M. Romero-Ugalde, C. Corbier, J. Dyn. Syst. Meas. Control 138, 051001 (2016)

    Article  Google Scholar 

  54. G. Cybenko, Math. Control, Signals Syst. 2, 303 (1989)

    Article  Google Scholar 

  55. G.B. Huang, Q.Y. Zhu, C.K. Siew, Neurocomputing 70, 489 (2006)

    Article  Google Scholar 

  56. H.M. Romero-Ugalde, J.C. Carmona, J. Reyes-Reyes, V.M. Alvarado, C. Corbier, Neural Comput. Appl. 26, 171 (2015)

    Article  Google Scholar 

  57. H.M. Romero-Ugalde, J.C. Carmona, V.M. Alvarado, J. Reyes-Reyes, Neurocomputing 101, 170 (2013)

    Article  Google Scholar 

  58. T. Das, I.N. Kar, IEEE Trans. Control Syst. Technol. 14, 501 (2006)

    Article  Google Scholar 

  59. M. Chen, S.S. Ge, B.V.E. How, IEEE Trans. Neural Netw. 21, 796 (2010)

    Article  Google Scholar 

  60. A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional neural networks, in Advances in neural information processing systems, Vol. 1 (2012) pp. 1097--1105

  61. D. Ciregan, U. Meier, J. Schmidhuber, Multi-column deep neural networks for image classification, in Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference (2012) pp. 3642--3649

  62. H. Qu, X. Liu, Adv. Math. Phys. 2015, 439526 (2015)

    Article  Google Scholar 

  63. A. Jafarian, M. Mokhtarpour, D. Baleanu, Neural Comput. Appl. 28, 765 (2017)

    Article  Google Scholar 

  64. M.A.Z. Raja, M.A. Manzar, R. Samar, Appl. Math. Model. 39, 3075 (2015)

    Article  MathSciNet  Google Scholar 

  65. M. Pakdaman, A. Ahmadian, S. Effati, S. Salahshour, D. Baleanu, Appl. Math. Comput. 293, 81 (2017)

    Article  MathSciNet  Google Scholar 

  66. B.P. Moghaddam, Z.S. Mostaghim, J. Taibah Univ. Sci. 7, 120 (2013)

    Article  Google Scholar 

  67. L. Tavernini, Continuous-Time modeling and simulation (Gordon and Breach, Amsterdam, 1996)

  68. I. Petras, Fractional-order nonlinear systems: modeling, analysis and simulation (Springer Science & Business Media, 2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. F. Gómez-Aguilar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zúñiga-Aguilar, C.J., Coronel-Escamilla, A., Gómez-Aguilar, J.F. et al. New numerical approximation for solving fractional delay differential equations of variable order using artificial neural networks. Eur. Phys. J. Plus 133, 75 (2018). https://doi.org/10.1140/epjp/i2018-11917-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2018-11917-0

Navigation