Laser-assisted generation of periodic structures on a steel surface: A method for increasing microhardness

Regular Article

Abstract.

Stainless steel grade 316L is a commonly used metal in various industrial applications because of its excellent resistance to corrosion and great welding and biocompatibility characteristics. Here, the laser-induced micro/nanostructures generation on the steel surface is investigated. A femtosecond ultrashort pulsed laser is selected in this regard, and various irradiation circumstances are considered for two groups of specimens possessing different initial roughness. It turns out that regular periodic ripples with spatial periodicities less than the laser wavelength are generated on both groups at irradiation fluences \(\le 2\) J/cm2. Furthermore, it figures out that each ripple is composed of the closely created nano dimension structures. Vickers micro-hardness test is also utilized to examine the alterations of the surface hardness features. Moreover, variations of the surface chemistry are studied and discussions related to the most effective factors in surface hardness raise/decrease are presented. Results reveal the potential benefits of the femtosecond laser technique, such as its flexibility and ease of implementation in controlled modification of the surface features. Thus, it might be of interest to manufacturers looking for precise surface morphology, chemistry and hardness alterations.

References

  1. 1.
    F. Ghasemi, P. Parvin, N.S. Hosseini Motlagh, Sh. Abachi, Biomed. Opt. Express 8, 512 (2017)CrossRefGoogle Scholar
  2. 2.
    S. Razi, M. Mollabashi, Kh. Madanipour, Int. J. Opt. Photon. 9, 43 (2015)Google Scholar
  3. 3.
    N.S. Hosseini Motlagh, P. Parvin, F. Ghasemi, F. Atyabi, Biomed. Opt. Express 7, 2400 (2016)CrossRefGoogle Scholar
  4. 4.
    F. Ghasemi, P. Parvin, N.H. Hosseini Motlagh, A. Amjadi, S. Abachi, Appl. Opt. 55, 8227 (2016)ADSCrossRefGoogle Scholar
  5. 5.
    F. Ghasemi, P. Parvin, N.S. Hosseini Motlagh, A. Bavali, R. Karimi, Optical spectroscopic methods to discriminate in-Vitro Hodgkin cancerous and normal tissues, in Optics in the Life Sciences (OSA, 2015) JT34A.40,  https://doi.org/10.1364/BODA.2015.JT3A.40
  6. 6.
    J. Bonse, R. Koter, M. Hartelt, D. Spaltmann, S. Pentzien, S. Höhm, A. Rosenfeld, J. Krüger, Appl. Surf. Sci. 336, 21 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    J. Bonse, S. Höhm, R. Koter, M. Hartelt, D. Spaltmann, S. Pentzien, A. Rosenfeld, J. Krüger, Appl. Surf. Sci. 374, 190 (2016)ADSCrossRefGoogle Scholar
  8. 8.
    I. Watanabe, M. McBride, P. Newton, K.S. Kurtz, Dent. Mater. 25, 629 (2009)CrossRefGoogle Scholar
  9. 9.
    J. Lee, J. Jang, J. Joo, Y. Son, Y. Moon, Trans. Nonferrous Met. Soc. China 19, 917 (2009)CrossRefGoogle Scholar
  10. 10.
    E. Williams, E.B. Brousseau, J. Mater. Process. Technol. 232, 34 (2016)CrossRefGoogle Scholar
  11. 11.
    A. Dunn, J.V. Carstensen, K.L. Wlodarczyk, E.B. Hansen, J. Gabzdyl, P.M. Harrison, J.D. Shephard, D.P. Hand, Opt. Lasers Eng. 62, 9 (2014)CrossRefGoogle Scholar
  12. 12.
    E. Chikarakara, S. Naher, D. Brabazon, Adv. Mater. Res. 264-265, 1401 (2011)CrossRefGoogle Scholar
  13. 13.
    C. Soriano, J. Leunda, J. Lambarri, V. García Navas, C. Sanz, Appl. Surf. Sci. 257, 7101 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    E. Hug, R. Prasath Babu, I. Monnet, A. Etienne, F. Moisy, V. Pralong, N. Enikeev, M. Abramova, X. Sauvage, B. Radiguet, Appl. Surf. Sci. 392, 1026 (2017)ADSCrossRefGoogle Scholar
  15. 15.
    K. Fujii, K. Fukuya, R. Kasada, A. Kimura, T. Ohkubo, J. Nucl. Mater. 407, 151 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    W.M. Steen, J. Mazumder, Laser Material Processing, 4th ed. (Springer-Verlag, London, 2010)Google Scholar
  17. 17.
    S. Oh, H. Ki, Appl. Therm. Eng. 121, 951 (2017)CrossRefGoogle Scholar
  18. 18.
    A. Hussain, A.H. Hamdani, R. Akhter, M. Aslam, J. Phys.: Conf. Ser. 439, 012006 (2013)Google Scholar
  19. 19.
    R. Li, Y. Jin, Zh. Li, K. Qi, J. Mater. Eng. Perform. 23, 3085 (2014)CrossRefGoogle Scholar
  20. 20.
    Z. Zhang, P. Lin, D. Cong, Sh. Kong, H. Zhou, L. Ren, Opt. Laser Technol. 64, 227 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    A. Poulon-Quintin, I. Watanabe, E. Watanabe, C. Bertrand, Dent. Mater. 28, 945 (2012)CrossRefGoogle Scholar
  22. 22.
    K.M. Tanvir Ahmmed, C. Grambow, A.M. Kietzig, Micromach. Micromach. 5, 1219 (2014)CrossRefGoogle Scholar
  23. 23.
    H. Nakano, Sh. Miyauti, N. Butani, T. Shibayanagi, M. Tsukamoto, N. Abe, J. Laser Micro/Nanoeng. 4, 35 (2009)CrossRefGoogle Scholar
  24. 24.
    B. Nie, L. Yang, H. Huang, Sh. Bai, P. Wan, J. Liu, Appl. Phys. A 119, 1075 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    J. Bonse, R. Koter, M. Hartelt, D. Spaltmann, S. Pentzien, S. Höhm, A. Rosenfeld, J. Krüger, Appl. Phys. A 117, 103 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    S. Razi, Kh. Madanipour, M. Mollabashi, Opt. Laser Technol. 80, 237 (2016)ADSCrossRefGoogle Scholar
  27. 27.
    S. Razi, M. Mollabashi, Kh. Madanipour, Eur. Phys. J. Plus 130, 247 (2015)CrossRefGoogle Scholar
  28. 28.
    S. Razi, Kh. Madanipour, M. Mollabashi, J. Laser Appl. 27, 042006 (2015)ADSCrossRefGoogle Scholar
  29. 29.
    J.M. Liu, Opt. Lett. 7, 196 (1982)ADSCrossRefGoogle Scholar
  30. 30.
    P.T. Mannion, J. Magee, E. Coyne, G.M. O’Connor, T.J. Glynn, Appl. Surf. Sci. 233, 275 (2004)ADSCrossRefGoogle Scholar
  31. 31.
    P. Bizi-bandoki, S. Valette, E. Audouard, S. Benayoun, Appl. Surf. Sci. 270, 197 (2013)ADSCrossRefGoogle Scholar
  32. 32.
    A.Y. Vorobyev, Ch. Guo, Laser Photon. Rev. 7, 385 (2013)CrossRefGoogle Scholar
  33. 33.
    O. Miyakawa, S. Okawa, M. Kobayashi, Dent. Mater. 25, 13 (2006)CrossRefGoogle Scholar
  34. 34.
    A. Speidel, A.H.A. Lutey, J. Mitchell-Smith, G.A. Rance, E. Liverani, A. Ascari, A. Fortunato, A. Clare, Surf. Coat. Technol. 307, 849 (2016)CrossRefGoogle Scholar
  35. 35.
    T. Amano, M. Okazaki, Y. Takezawa, A. Shiino, M. Takeda, T. Onishi, K. Seto, A. Ohkubo, T. Mater, Sci. Forum 522-523, 469 (2006)CrossRefGoogle Scholar
  36. 36.
    F. Cordovilla, Á. García-Beltrán, J. Dominguez, P. Sancho, J.L. Ocãn, Appl. Surf. Sci. 357, 1236 (2015)ADSCrossRefGoogle Scholar
  37. 37.
    Ch. Shih, Ch. Ming Shih, Y. Yang Su, L. Hui Julie Su, M. Song Chang, Sh. Jong Lin, Corros. Sci. 46, 427 (2004)CrossRefGoogle Scholar
  38. 38.
    M. Hruška, J. Tesař, M. Vostřák, E. Smazalová, IOP Conf. Ser.: Mater. Sci. Eng. 179, 012029 (2017)Google Scholar
  39. 39.
    J. Dossett, G.E. Totten, Steel Heat Treating Fundamentals and Processes ASM Handbook, Vol. 4A (AMS International, 2013) pp. 389--398, https://www.amsinternational.org/documents/10192/1849770/5344G_TOC.pdf
  40. 40.
    X. Zhao, B. Song, Y. Zhang, X. Zhu, Q. Wei, Y. Shi, Mater. Sci. Eng. A 647, 58 (2015)CrossRefGoogle Scholar
  41. 41.
    N. Hansen, Scr. Mater. 51, 801 (2004)CrossRefGoogle Scholar
  42. 42.
    J. Reif, C. Martens, S. Uhlig, M. Ratzke, O. Varlamova, S. Valette, S. Benayoun, Appl. Surf. Sci. 336, 249 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Electrical EngineeringUrmia University of Technology -UUTUrmiaIran
  2. 2.Young Researchers and elite Club, Bandar Abbas BranchIslamic Azad UniversityBandar AbbasIran

Personalised recommendations