Late time cosmological dynamics with a nonminimal extension of the mimetic matter scenario

Regular Article
  • 16 Downloads

Abstract.

We investigate an extension of mimetic gravity in which mimetic matter is nonminimally coupled to the Ricci scalar. We derive the background field equations and show that, as the minimal case, the nonminimal mimetic matter can behave as dark matter or dark energy. By adopting some well-known potentials, we study the dynamics of the scale factor and the equation of state parameter in detail. As the effective mimetic dark energy, this model explains the late time cosmic acceleration and its equation of state parameter crosses the phantom divide. We extend our analysis to the dynamical system approach and the phase space trajectories of the model. We obtain an attractor line which corresponds to the late time cosmic acceleration. By comparing this nonminimal mimetic matter scenario with observational data for the LCDM, we show that the confidence levels of this model overlap with those of Planck 2015 TT, TE, EE + Low P + Lensing + BAO data in the LCDM model.

References

  1. 1.
    B. Ratra, P.J.E. Peebles, Phys. Rev. D 37, 3406 (1988)ADSCrossRefGoogle Scholar
  2. 2.
    C. Wetterich, Nucl. Phys. B 302, 668 (1988)ADSCrossRefGoogle Scholar
  3. 3.
    R.R. Caldwell, R. Dave, P.J. Steinhardt, Phys. Rev. Lett. 80, 1582 (1998)ADSCrossRefGoogle Scholar
  4. 4.
    I. Zlatev, L. Wang, P.J. Steinhardt, Phys. Rev. Lett. 82, 896 (1999)ADSCrossRefGoogle Scholar
  5. 5.
    R.R. Caldwell, Phys. Lett. B 545, 23 (2002)ADSCrossRefGoogle Scholar
  6. 6.
    R.R. Caldwell, M. Kamionkowski, N.N. Weinberg, Phys. Rev. Lett. 91, 071301 (2003)ADSCrossRefGoogle Scholar
  7. 7.
    S. Nojiri, S.D. Odintsov, Phys. Lett. B 562, 147 (2003)ADSCrossRefGoogle Scholar
  8. 8.
    V.K. Onemli, R.P. Woodard, Phys. Rev. D 70, 107301 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    E.J. Copeland, M. Sami, S. Tsujikawa, Int. J. Mod. Phys. D 15, 1753 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    T. Padmanabhan, T.R. Choudhury, Phys. Rev. D 66, 081301 (2002)ADSCrossRefGoogle Scholar
  11. 11.
    A. Sen, JHEP 07, 065 (2002)ADSCrossRefGoogle Scholar
  12. 12.
    A. Sen, Mod. Phys. Lett. A 17, 1797 (2002)ADSCrossRefGoogle Scholar
  13. 13.
    K. Nozari, N. Rashidi, Phys. Rev. D 90, 043522 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    C. Armendariz-Picon, V. Mukhanov, P.J. Steinhardt, Phys. Rev. Lett. 85, 4438 (2000)ADSCrossRefGoogle Scholar
  15. 15.
    T. Chiba, T. Okabe, M. Yamaguchi, Phys. Rev. D 62, 023511 (2000)ADSCrossRefGoogle Scholar
  16. 16.
    N. Bilic, G.B. Tupper, R.D. Viollier, Phys. Lett. B 535, 17 (2002)ADSCrossRefGoogle Scholar
  17. 17.
    K. Karami, Mubasher Jamil, S. Ghaffari, K. Fahimi, Can. J. Phys. 10, 91 (2013)Google Scholar
  18. 18.
    A. Chamseddine, V. Mukhanov, JHEP 11, 135 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    A. Golovnev, Phys. Lett. B 728, 39 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    A.O. Barvinsky, JCAP 01, 014 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    K. Hammer, A. Vikman, arXiv:1512.09118Google Scholar
  22. 22.
    A. Chamseddine, V. Mukhanov, A. Vikman, JCAP 06, 017 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    L. Sebastiani, S. Vagnozzi, R. Myrzakulov, Adv. High Energy Phys. 2017, 3156915 (2017)CrossRefGoogle Scholar
  24. 24.
    L. Shen, Y. Mou, Y. Zheng, M. Li, arXiv:1710.03945Google Scholar
  25. 25.
    S.A. Paston, Phys. Rev. D 96, 084059 (2017)ADSCrossRefGoogle Scholar
  26. 26.
    S.D. Odintsov, Fortsch. Phys. 39, 621 (1991)ADSCrossRefGoogle Scholar
  27. 27.
    T. Muta et al., Mod. Phys. Lett. A 6, 3641 (1991)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    K. Nozari, B. Fazlpour, JCAP 06, 032 (2008)ADSCrossRefGoogle Scholar
  29. 29.
    T. Futamase, K. Maeda, Phys. Rev. D 39, 399 (1989)ADSCrossRefGoogle Scholar
  30. 30.
    D.S. Salopek, J.R. Bond, J.M. Bardeen, Phys. Rev. D 40, 1753 (1989)ADSCrossRefGoogle Scholar
  31. 31.
    R. Fakir, W.G. Unruh, Phys. Rev. D 41, 1783 (1990)ADSCrossRefGoogle Scholar
  32. 32.
    N. Makino, M. Sasaki, Prog. Theor. Phys. 86, 103 (1991)ADSCrossRefGoogle Scholar
  33. 33.
    J. Hwang, H. Noh, Phys. Rev. D 60, 123001 (1999)ADSCrossRefGoogle Scholar
  34. 34.
    S. Tsujikawa, H. Yajima, Phys. Rev. D 62, 123512 (2000)ADSCrossRefGoogle Scholar
  35. 35.
    C. Pallis, N. Toumbas, JCAP 02, 019 (2011)ADSCrossRefGoogle Scholar
  36. 36.
    K. Nozari, JCAP 09, 003 (2007)ADSCrossRefGoogle Scholar
  37. 37.
    K. Nozari, S. Shafizadeh, Phys. Scr. 82, 015901 (2010)ADSCrossRefGoogle Scholar
  38. 38.
    V. Faraoni, Phys. Rev. D 53, 6813 (1996)ADSCrossRefGoogle Scholar
  39. 39.
    V. Faraoni, Phys. Rev. D 62, 023504 (2000)ADSCrossRefGoogle Scholar
  40. 40.
    R. Fakir, W.G. Unruh, Astrophys. J. 394, 396 (1992)ADSCrossRefGoogle Scholar
  41. 41.
    T. Fukuyama et al., Int. J. Mod. Phys. D 6, 69 (1997)ADSCrossRefGoogle Scholar
  42. 42.
    T. Futamase, M. Tanaka, Phys. Rev. D 60, 063511 (1999)ADSCrossRefGoogle Scholar
  43. 43.
    B. Bassett, S. Liberati, Phys. Rev. D 58, 021302 (1998)ADSCrossRefGoogle Scholar
  44. 44.
    K. Nozari, N. Rashidi, Adv. High Energy Phys. 2016, 1252689 (2016)CrossRefGoogle Scholar
  45. 45.
    N.D. Birrell, P.C.W. Davies, Quantum Fields in Curved Spaces (Cambridge University Press, Cambridge, 1982)Google Scholar
  46. 46.
    A. Zee, Phys. Rev. Lett. 42, 417 (1979)ADSCrossRefGoogle Scholar
  47. 47.
    F.S. Accetta, D.J. Zoller, M.S. Turner, Phys. Rev. D 31, 3046 (1985)ADSCrossRefGoogle Scholar
  48. 48.
    D. La, P.J. Steinhardt, Phys. Rev. Lett. 62, 376 (1989)ADSCrossRefGoogle Scholar
  49. 49.
    D. La, P.J. Steinhardt, Phys. Lett. B 220, 375 (1989)ADSCrossRefGoogle Scholar
  50. 50.
    S. Randjbar-Daemi, A. Salam, J. Strathdee, Phys. Lett. B 135, 388 (1984)ADSCrossRefGoogle Scholar
  51. 51.
    H.M. Lee, Eur. Phys. J. C 74, 3022 (2014)ADSCrossRefGoogle Scholar
  52. 52.
    D. Glavan, A. Marunović, T. Prokopec, Phys. Rev. D 92, 044008 (2015)ADSMathSciNetCrossRefGoogle Scholar
  53. 53.
    Y. Zheng, L. Shen, Y. Mou, M. Li, arXiv:1704.06834Google Scholar
  54. 54.
    H. Firouzjahi, M.A. Gorji, A.H. Mansoori, arXiv:1703.02923Google Scholar
  55. 55.
    S. Ramazanov, F. Arroja, M. Celoria, S. Matarrese, L. Pilo, JHEP 06, 020 (2016)ADSCrossRefGoogle Scholar
  56. 56.
    M.A. Gorji, S.A. Hosseini Mansoori, H. Firouzjahi, arXiv:1709.09988Google Scholar
  57. 57.
    F. Arroja, T. Okumura, N. Bartolo, P. Karmakar, S. Matarrese, arXiv:1708.01850Google Scholar
  58. 58.
    Planck Collaboration (P.A.R. Ade et al.), Astron. Astrophys. 594, A14 (2016)CrossRefGoogle Scholar
  59. 59.
    S. Nojiri, S.D. Odintsov, Mod. Phys. Lett. A 29, 1450211 (2014)ADSCrossRefGoogle Scholar
  60. 60.
    J. Matsumoto, S.D. Odintsov, S.V. Sushkov, Phys. Rev. D 91, 064062 (2015)ADSMathSciNetCrossRefGoogle Scholar
  61. 61.
    A.V. Astashenok, S.D. Odintsov, V.K. Oikonomou, Class. Quantum Grav. 32, 18 (2015)CrossRefGoogle Scholar
  62. 62.
    S.D. Odintsov, V.K. Oikonomou, arXiv:1508.07488 [gr-qc]Google Scholar
  63. 63.
    S.D. Odintsov, V.K. Oikonomou, Phys. Rev. D 93, 023517 (2016)ADSMathSciNetCrossRefGoogle Scholar
  64. 64.
    A.V. Astashenok, S.D. Odintsov, Phys. Rev. D 94, 063008 (2016)ADSCrossRefGoogle Scholar
  65. 65.
    S.D. Odintsov, V.K. Oikonomou, Astrophys. Space Sci. 361, 174 (2016)ADSCrossRefGoogle Scholar
  66. 66.
    S. Nojiri, S.D. Odintsov, V.K. Oikonomou, Class. Quantum Grav. 33, 12 (2016)CrossRefGoogle Scholar
  67. 67.
    S.D. Odintsov, V.K. Oikonomou, Astrophys. Space Sci. 361, 236 (2016)ADSCrossRefGoogle Scholar
  68. 68.
    S.D. Odintsov, V.K. Oikonomou, Phys. Rev. D 94, 044012 (2016)ADSMathSciNetCrossRefGoogle Scholar
  69. 69.
    S. Nojiri, S.D. Odintsov, V.K. Oikonomou, arXiv:1608.07806 [gr-qc]Google Scholar
  70. 70.
    N. Sadeghnezhad, K. Nozari, Phys. Lett. B 769, 134 (2017)ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics, Faculty of Basic SciencesUniversity of MazandaranBabolsarIran

Personalised recommendations