Skip to main content
Log in

Modulational instability: Conservation laws and bright soliton solution of ion-acoustic waves in electron-positron-ion-dust plasmas

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

We consider the nonlinear propagation of non-planar (cylindrical and spherical) ion-acoustic (IA) envelope solitary waves in an unmagnetized plasma consisting of electron-positron-ion-dust plasma with two-electron temperature distributions in the context of the non-extensive statistics. The basic set of fluid equations is reduced to the modified nonlinear Schrödinger (MNLS) equation in cylindrical and spherical geometry by using the reductive perturbation method (RPM). It is found that the nature of the modulational instabilities would be significantly modified due to the effects of the non-extensive and other plasma parameters as well as cylindrical and spherical geometry. Conservation laws of the MNLS equation are obtained by Lie symmetry and multiplier method. A new exact solution (envelope bright soliton) is obtained by the extended homogeneous balance method. Finally, we study the results of this article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shimin Guo, Liquan Mei, Anbang Sun, Ann. Phys. 332, 38 (2013)

    ADS  Google Scholar 

  2. Sailendra Nath Paul, Asesh Roychowdhury, Chaos, Solitons Fractals 91, 406 (2016)

    Article  MathSciNet  Google Scholar 

  3. Chuan-Qi Su, Yong-Yan Wang, Xue-Qing Liu, Nan Qin, Commun. Nonlinear Sci. Numer. Simul. 48, 236 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  4. J.K. Chawla, M.K. Mishra, R.S. Tiwari, Astrophys. Space Sci. 347, 283 (2013)

    Article  ADS  Google Scholar 

  5. G.P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, San Diego, 2007)

  6. A.K. Sarma, M. Saha, J. Opt. Soc. Am. B 28, 944 (2011)

    Article  ADS  Google Scholar 

  7. M.J. Potasek, Opt. Lett. 12, 921 (1987)

    Article  ADS  Google Scholar 

  8. P.K. Shukla, J.J. Rasmussen, Opt. Lett. 11, 171 (1986)

    Article  ADS  Google Scholar 

  9. A.K. Sarma, EPL 92, 24004 (2010)

    Article  ADS  Google Scholar 

  10. Y. Xiang, X. Dai, S. Wen, D. Fan, J. Opt. Soc. Am. B 28, 908 (2011)

    Article  ADS  Google Scholar 

  11. A.K. Sarma, P. Kumar, Appl. Phys. B 106, 289 (2012)

    Article  ADS  Google Scholar 

  12. A.P. Misra, C. Bhowmik, P.K. Shukla, Phys. Plasmas 16, 072116 (2009)

    Article  ADS  Google Scholar 

  13. R. Ahmad, N. Gul, M. Adnan, M. Tribeche, F.Y. Khattak, Phys. Plasmas 24, 042108 (2017)

    Article  ADS  Google Scholar 

  14. R. Sabry, M.A. Omran, Astrophys. Space Sci. 344, 455 (2013)

    Article  ADS  Google Scholar 

  15. T.S. Gill, H. Kaur, S. Bansal, N.S. Saini, P. Bala, Eur. Phys. J. D 41, 151 (2007)

    Article  ADS  Google Scholar 

  16. Y. Wang, Z. Zhou, X. Jiang, X. Ni, J. Shen, P. Qian, Phys. Plasmas 16, 033706 (2009)

    Article  ADS  Google Scholar 

  17. K. Javidan, H.R. Pakzad, Astrophys. Space Sci. 350, 557 (2014)

    Article  ADS  Google Scholar 

  18. I. Kourakis, M. Kerr, A. Ur-Rahman, J. Plasma Phys. 79, 1089 (2013)

    Article  ADS  Google Scholar 

  19. B. Ghosh, S. Banerjee, J. Plasma Phys. https://doi.org/10.1017/S0022377814001305 (2015)

  20. H. Alinejad, M. Mahdavi, M. Shahmansouri, J. Plasma Phys. 82, 905820104 (2016)

    Article  Google Scholar 

  21. Nusrat Jehan, M. Salahuddin, Arshad M. Mirza, Phys. Plasma 16, 062305 (2009)

    Article  ADS  Google Scholar 

  22. H.R. Pakzad, K. Javidan, A. Rafiei, Astrophys. Space Sci. 353, 543 (2014)

    Article  ADS  Google Scholar 

  23. J.K. Chawla, M.K. Mishra, R.S. Tiwari, Astrophys. Space Sci. 347, 283 (2013)

    Article  ADS  Google Scholar 

  24. S. Sultana, S. Islam, A.A. Mamun, Astrophys. Space Sci. 351, 581 (2014)

    Article  ADS  Google Scholar 

  25. A.H. Khater, O.H. El-Kalaawy, D.K. Callebaut, Phys. Scr. 58, 545 (1998)

    Article  ADS  Google Scholar 

  26. W. Malfiet, Am. J. Phys. 60, 650 (1992)

    Article  ADS  Google Scholar 

  27. O.H. EL-Kalaawy, R.B. Aldenari, Phys. Plasmas 21, 092308 (2014)

    Article  ADS  Google Scholar 

  28. A.M. Wazwaz, Comput. Math. Appl. 49, 1101 (2005)

    Article  MathSciNet  Google Scholar 

  29. A.M. Wazwaz, Phys. Lett. A 366, 85 (2007)

    Article  ADS  Google Scholar 

  30. B. Tian, Y.T. Gao, H.W. Zhu, Phys. Lett. A 366, 223 (2007)

    Article  ADS  Google Scholar 

  31. O.H. EL-Kalaawy, Phys. Plasmas 24, 032308 (2017)

    Article  ADS  Google Scholar 

  32. N.H. Ibragimov, J. Math. Anal. Appl. 333, 311 (2007)

    Article  MathSciNet  Google Scholar 

  33. J.H. He, Chaos, Solitons Fractals 19, 847 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  34. R.A. Abdullahi, Ben Muatjetjeja, Appl. Math. Lett. 48, 109 (2015)

    Article  MathSciNet  Google Scholar 

  35. O.H. EL-Kalaawy, Comput. Math. Appl. 72, 1031 (2016)

    Article  MathSciNet  Google Scholar 

  36. O.H. EL-Kalaawy, S.M. Moawad, Shrouk Wael, Results Phys. 7, 934 (2017)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. H. EL-Kalaawy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

EL-Kalaawy, O.H. Modulational instability: Conservation laws and bright soliton solution of ion-acoustic waves in electron-positron-ion-dust plasmas. Eur. Phys. J. Plus 133, 58 (2018). https://doi.org/10.1140/epjp/i2018-11873-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2018-11873-7

Navigation