Skip to main content
Log in

Mesoporous TiO2 and copper-modified TiO2 nanoparticles: A case study

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

In this paper we report the synthesis of mesoporous titanium dioxide (M-TiO2) nanoparticles (NPs) and copper (Cu)-modified M-TiO2 NPs by the hydrothermal method at relatively low temperatures using cetyltrimethylammonium bromide (CTAB) as a template. In order to get ordered spherical particles and better interaction between cationic and anionic precursor, we have used titanium isopropoxide (TTIP) as titanium source and CTAB as surfactant. The process of modification by copper to M-TiO2 follows the impregnation method. The change in structural and optical properties of NPs were estimated using different characterization techniques like X-ray diffraction, field emission scanning electron microscopy, Brunner-Emmett-Teller curve and UV-Vis absorption analysis. M-TiO2 and Cu-modified M-TiO2 exhibit pure anatase crystalline phase and shows no evidence of CuO formation. Nitrogen adsorption-desorption hysteresis reveals that the material is mesoporous. Several samples synthesized at different process temperature were further studied in order to make them suitable for a wide range of applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.P. Macwan, P.N. Dave, S. Chaturvedi, J. Mater. Sci. 46, 3669 (2011)

    Article  ADS  Google Scholar 

  2. Y. Liu, Y. Yang, J. Nanomater. 2016, 8123652 (2016)

    Google Scholar 

  3. M. Gratzel, Prog. Photovolt. Res. Appl. 8, 171 (2000)

    Article  Google Scholar 

  4. A. Fujishima, K. Honda, Nature 238, 37 (1972)

    Article  ADS  Google Scholar 

  5. A. Zaleska, Recent Pat. Eng. 2, 157 (2008)

    Article  Google Scholar 

  6. D.S. Kim, S.Y. Kwak, Appl. Catal. A 323, 110 (2007)

    Article  Google Scholar 

  7. L. Li, C.Y. Liu, J. Phys. Chem. C 114, 1444 (2010)

    Article  ADS  Google Scholar 

  8. H. Wang, Y. Song, W. Liu, S. Yao, W. Zhang, Mater. Lett. 93, 319 (2013)

    Article  Google Scholar 

  9. J.C. Yu, L. Zhang, J. Yu, Chem. Mater. 14, 4647 (2002)

    Article  Google Scholar 

  10. K.J. Hwang, J.W. Lee, S.J. Yoo, S. Jeong, D.H. Jeong, W.G. Shim, D.W. Cho, New J. Chem. 37, 1378 (2013)

    Article  Google Scholar 

  11. Z. Wang, T. Jiang, Y. Du, K. Chen, H. Yin, Mater. Lett. 60, 2493 (2006)

    Article  Google Scholar 

  12. Z. Tan, K. Sato, S. Ohara, Adv. Powder Technol. 26, 296 (2016)

    Article  Google Scholar 

  13. Y. Wang, W. Duan, B. Liu, X. Chen, F. Yang, J. Guo, J. Nanomater. 2014, 178152 (2014)

    Google Scholar 

  14. L.S. Yoong, F.K. Chong, B.K. Dutta, J. Energy 34, 1652 (2009)

    Article  Google Scholar 

  15. C. Sangwichien, G.L. Aranovich, M.D. Donohue, Colloids Surf. A 206, 313 (2002)

    Article  Google Scholar 

  16. S. Rtimi, Catalysts 7, 57 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ch. Rajesh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ajay Kumar, R., Vasavi Dutt, V.G. & Rajesh, C. Mesoporous TiO2 and copper-modified TiO2 nanoparticles: A case study. Eur. Phys. J. Plus 133, 60 (2018). https://doi.org/10.1140/epjp/i2018-11870-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2018-11870-x

Navigation