Dynamic response of a single-walled carbon nanotube under a moving harmonic load by considering modified nonlocal elasticity theory

  • O. Rahmani
  • M. Shokrnia
  • H. Golmohammadi
  • S. A. H. Hosseini
Regular Article
  • 16 Downloads

Abstract.

Transverse forced vibration of a single-walled carbon nanotube (SWCNT) under excitation of a moving harmonic load has been analyzed based on modified nonlocal elasticity theory. In the parametric study, influences of nonlocal parameter, velocity of the moving load, excitation frequency, order of derivative and their interactive effects on forced deflection of the nanotube have been investigated in details. Numerical amounts of the dimensionless static deflection of the SWCNT have been calculated and compared with those of existing papers and an excellent agreement has been achieved. The results show that the variation of N affects the dynamic deflection and natural frequency of SWCNTs, significantly. Also by amplification of the excitation frequency, differences between the amounts of dynamic deflection become smaller for various values of N . Furthermore, decreasing the frequency ratio causes a reduction of the maximum deflection and increasing the frequency ratio causes an increase of the maximum deflection for values of load velocity which are greater than a specified value.

References

  1. 1.
    A. Zienert, J. Schuster, R. Streiter, T. Gessner, Phys. Status Solidi (b) 247, 3002 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    C. Tang, W. Guo, C. Chen, Phys. Rev. B 79, 155436 (2009)ADSCrossRefGoogle Scholar
  3. 3.
    K. Tsukagoshi, N. Yoneya, S. Uryu, Y. Aoyagi, A. Kanda, Y. Ootuka et al., Physica B 323, 107 (2002)ADSCrossRefGoogle Scholar
  4. 4.
    H. Wan, F. Delale, Meccanica 45, 43 (2010)CrossRefGoogle Scholar
  5. 5.
    S. Aman, I. Khan, Z. Ismail, M.Z. Salleh, Q.M. Al-Mdallal, Sci. Rep. 7, 2445 (2017)ADSCrossRefGoogle Scholar
  6. 6.
    K. Asma, I. Khan, S. Sharidan, Eur. Phys. J. Plus 130, 57 (2015)CrossRefGoogle Scholar
  7. 7.
    S.A.A. Jan, F. Ali, N.A. Sheikh, I. Khan, M. Saqib, M. Gohar, Engine oil based generalized Brinkman-type nano-liquid with molybdenum disulphide nanoparticles of spherical shape: Atangana-Baleanu fractional model, Numer. Methods Partial Differ. Equ. (2017)  https://doi.org/10.1002/num.22200
  8. 8.
    N.A.M. Zin, I. Khan, S. Shafie, A.S. Alshomrani, Results Phys. 7, 288 (2017)ADSCrossRefGoogle Scholar
  9. 9.
    I. Khan, J. Mol. Liq. 233, 442 (2017)CrossRefGoogle Scholar
  10. 10.
    A.C. Eringen, J. Appl. Phys. 54, 4703 (1983)ADSCrossRefGoogle Scholar
  11. 11.
    M. Ahouel, M.S.A. Houari, E. Bedia, A. Tounsi, Steel Compos. Struct. 20, 963 (2016)CrossRefGoogle Scholar
  12. 12.
    F.L. Chaht, A. Kaci, M.S.A. Houari, A. Tounsi, O.A. Bég, S. Mahmoud, Steel Compos. Struct. 18, 425 (2015)CrossRefGoogle Scholar
  13. 13.
    I. Belkorissat, M.S.A. Houari, A. Tounsi, E. Bedia, S. Mahmoud, Steel Compos. Struct. 18, 1063 (2015)CrossRefGoogle Scholar
  14. 14.
    F. Bounouara, K.H. Benrahou, I. Belkorissat, A. Tounsi, Steel Compos. Struct. 20, 227 (2016)CrossRefGoogle Scholar
  15. 15.
    K. Bouafia, A. Kaci, M.S.A. Houari, A. Benzair, A. Tounsi, Smart Struct. Syst. 19, 115 (2017)CrossRefGoogle Scholar
  16. 16.
    W.A. Bedia, A. Benzair, A. Semmah, A. Tounsi, S. Mahmoud, Braz. J. Phys. 45, 225 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    M. Zidour, K.H. Benrahou, A. Semmah, M. Naceri, H.A. Belhadj, K. Bakhti et al., Comput. Mater. Sci. 51, 252 (2012)CrossRefGoogle Scholar
  18. 18.
    C. Wang, Y.Y. Zhang, S. Kitipornchai, Int. J. Struct. Stab. Dyn. 7, 555 (2007)MathSciNetCrossRefGoogle Scholar
  19. 19.
    C.W. Lim, Y. Yang, J. Comput. Theor. Nanosci. 7, 988 (2010)CrossRefGoogle Scholar
  20. 20.
    A. Benzair, A. Tounsi, A. Besseghier, H. Heireche, N. Moulay, L. Boumia, J. Phys. D 41, 225404 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    A. Tounsi, M.S.A. Houari, S. Benyoucef, Aerospace Sci. Technol. 24, 209 (2013)CrossRefGoogle Scholar
  22. 22.
    A. Attia, A. Tounsi, E.A. Bedia, S. Mahmoud, Steel Compos. Struct. 18, 187 (2015)CrossRefGoogle Scholar
  23. 23.
    B. Bouderba, M.S.A. Houari, A. Tounsi, Steel Compos. Struct. 14, 85 (2013)CrossRefGoogle Scholar
  24. 24.
    M. Bourada, A. Kaci, M.S.A. Houari, A. Tounsi, Steel Compos. Struct. 18, 409 (2015)CrossRefGoogle Scholar
  25. 25.
    A.A. Bousahla, S. Benyoucef, A. Tounsi, S. Mahmoud, Struct. Eng. Mech. 60, 313 (2016)CrossRefGoogle Scholar
  26. 26.
    M.S.A. Houari, A. Tounsi, A. Bessaim, S. Mahmoud, Steel Compos. Struct. 22, 257 (2016)CrossRefGoogle Scholar
  27. 27.
    S.A. Yahia, H.A. Atmane, M.S.A. Houari, A. Tounsi, Struct. Eng. Mech. 53, 1143 (2015)CrossRefGoogle Scholar
  28. 28.
    M. Zidi, A. Tounsi, M.S.A. Houari, O.A. Bég, Aerospace Sci. Technol. 34, 24 (2014)CrossRefGoogle Scholar
  29. 29.
    H. Hebali, A. Tounsi, M.S.A. Houari, A. Bessaim, E.A.A. Bedia, J. Eng. Mech. 140, 374 (2014)CrossRefGoogle Scholar
  30. 30.
    A. Hamidi, M.S.A. Houari, S. Mahmoud, A. Tounsi, Steel Compos. Struct. 18, 235 (2015)CrossRefGoogle Scholar
  31. 31.
    M. Bennoun, M.S.A. Houari, A. Tounsi, Mech. Adv. Mater. Struct. 23, 423 (2016)CrossRefGoogle Scholar
  32. 32.
    Z. Belabed, M.S.A. Houari, A. Tounsi, S. Mahmoud, O.A. Bég, Composites Part B 60, 274 (2014)CrossRefGoogle Scholar
  33. 33.
    K. Kiani, Physica E 42, 2391 (2010)ADSCrossRefGoogle Scholar
  34. 34.
    T. Murmu, S. Pradhan, Comput. Mater. Sci. 46, 854 (2009)CrossRefGoogle Scholar
  35. 35.
    S. Pradhan, T. Murmu, J. Appl. Phys. 105, 124306 (2009)ADSCrossRefGoogle Scholar
  36. 36.
    J. Bocko, P. Lengvarský, Am. J. Mech. Eng. 2, 195 (2014)CrossRefGoogle Scholar
  37. 37.
    A. Tylikowski, J. Therm. Stress. 35, 281 (2012)CrossRefGoogle Scholar
  38. 38.
    M.A. Hawwa, H.M. Al-Qahtani, Comput. Mater. Sci. 48, 140 (2010)CrossRefGoogle Scholar
  39. 39.
    C. Thongyothee, S. Chucheepsakul, T. Li, Adv. Mater. Res. 747, 257 (2013)CrossRefGoogle Scholar
  40. 40.
    R. Artan, L. Lehmann, J. Comput. Theor. Nanosci. 6, 653 (2009)CrossRefGoogle Scholar
  41. 41.
    I. Senjanović, M. Tomić, N. Hadžić, J. Mech. Behav. Mater. 23, 109 (2014)Google Scholar
  42. 42.
    P. Karaoglu, M. Aydogdu, Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci. 224, 497 (2010)CrossRefGoogle Scholar
  43. 43.
    A. Pirmohammadi, M. Pourseifi, O. Rahmani, S. Hoseini, Appl. Phys. A 117, 1547 (2014)CrossRefGoogle Scholar
  44. 44.
    M. Pourseifi, O. Rahmani, S. Hoseini, Meccanica 50, 1351 (2015)MathSciNetCrossRefGoogle Scholar
  45. 45.
    O. Rahmani, S.A.H. Hosseini, M.H. Noroozi Moghaddam, I. Fakhari Golpayegani, Int. J. Appl. Mech. 07, 1550036 (2015)CrossRefGoogle Scholar
  46. 46.
    A.A. Jandaghian, O. Rahmani, J. Mech. 32, 143 (2016)CrossRefGoogle Scholar
  47. 47.
    S.A.H. Hosseini, O. Rahmani, Meccanica 52, 1441 (2017)MathSciNetCrossRefGoogle Scholar
  48. 48.
    A. Jandaghian, O. Rahmani, Smart Mater. Struct. 25, 035023 (2016)ADSCrossRefGoogle Scholar
  49. 49.
    O. Rahmani, S.A.H. Hosseini, H. Hayati, Mod. Phys. Lett. B 30, 1650136 (2016)ADSCrossRefGoogle Scholar
  50. 50.
    A.A. Jandaghian, O. Rahmani, J. Mech. Sci. Technol. 29, 3175 (2015)CrossRefGoogle Scholar
  51. 51.
    S. Hosseini, O. Rahmani, Int. J. Struct. Stab. Dyn. 16, 1550077 (2016)MathSciNetCrossRefGoogle Scholar
  52. 52.
    S.A.H. Hosseini, O. Rahmani, J. Therm. Stresses 39, 1252 (2016)CrossRefGoogle Scholar
  53. 53.
    A. Jandaghian, O. Rahmani, Superlattices Microstruct. 100, 57 (2016)ADSCrossRefGoogle Scholar
  54. 54.
    Y. Zhang, G. Liu, X. Xie, Phys. Rev. B 71, 195404 (2005)ADSCrossRefGoogle Scholar
  55. 55.
    P. Lu, H. Lee, C. Lu, P. Zhang, J. Appl. Phys. 99, 073510 (2006)ADSCrossRefGoogle Scholar
  56. 56.
    L. Fryba, Vibration of Solids and Structures under Moving Loads (Noordhoff International, Groningen, The Netherlands, 1972)Google Scholar
  57. 57.
    M. Simşek, Comput. Mater. Sci. 50, 2112 (2011)CrossRefGoogle Scholar
  58. 58.
    Q. Wang, K. Liew, Phys. Lett. A 363, 236 (2007)ADSCrossRefGoogle Scholar
  59. 59.
    S. Gupta, F. Bosco, R. Batra, Comput. Mater. Sci. 47, 1049 (2010)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Smart Structures and New Advanced Materials Laboratory Department of Mechanical EngineeringUniversity of ZanjanZanjanIran

Personalised recommendations