Skip to main content
Log in

Dynamic response of a single-walled carbon nanotube under a moving harmonic load by considering modified nonlocal elasticity theory

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

Transverse forced vibration of a single-walled carbon nanotube (SWCNT) under excitation of a moving harmonic load has been analyzed based on modified nonlocal elasticity theory. In the parametric study, influences of nonlocal parameter, velocity of the moving load, excitation frequency, order of derivative and their interactive effects on forced deflection of the nanotube have been investigated in details. Numerical amounts of the dimensionless static deflection of the SWCNT have been calculated and compared with those of existing papers and an excellent agreement has been achieved. The results show that the variation of N affects the dynamic deflection and natural frequency of SWCNTs, significantly. Also by amplification of the excitation frequency, differences between the amounts of dynamic deflection become smaller for various values of N . Furthermore, decreasing the frequency ratio causes a reduction of the maximum deflection and increasing the frequency ratio causes an increase of the maximum deflection for values of load velocity which are greater than a specified value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Zienert, J. Schuster, R. Streiter, T. Gessner, Phys. Status Solidi (b) 247, 3002 (2010)

    Article  ADS  Google Scholar 

  2. C. Tang, W. Guo, C. Chen, Phys. Rev. B 79, 155436 (2009)

    Article  ADS  Google Scholar 

  3. K. Tsukagoshi, N. Yoneya, S. Uryu, Y. Aoyagi, A. Kanda, Y. Ootuka et al., Physica B 323, 107 (2002)

    Article  ADS  Google Scholar 

  4. H. Wan, F. Delale, Meccanica 45, 43 (2010)

    Article  Google Scholar 

  5. S. Aman, I. Khan, Z. Ismail, M.Z. Salleh, Q.M. Al-Mdallal, Sci. Rep. 7, 2445 (2017)

    Article  ADS  Google Scholar 

  6. K. Asma, I. Khan, S. Sharidan, Eur. Phys. J. Plus 130, 57 (2015)

    Article  Google Scholar 

  7. S.A.A. Jan, F. Ali, N.A. Sheikh, I. Khan, M. Saqib, M. Gohar, Engine oil based generalized Brinkman-type nano-liquid with molybdenum disulphide nanoparticles of spherical shape: Atangana-Baleanu fractional model, Numer. Methods Partial Differ. Equ. (2017) https://doi.org/10.1002/num.22200

  8. N.A.M. Zin, I. Khan, S. Shafie, A.S. Alshomrani, Results Phys. 7, 288 (2017)

    Article  ADS  Google Scholar 

  9. I. Khan, J. Mol. Liq. 233, 442 (2017)

    Article  Google Scholar 

  10. A.C. Eringen, J. Appl. Phys. 54, 4703 (1983)

    Article  ADS  Google Scholar 

  11. M. Ahouel, M.S.A. Houari, E. Bedia, A. Tounsi, Steel Compos. Struct. 20, 963 (2016)

    Article  Google Scholar 

  12. F.L. Chaht, A. Kaci, M.S.A. Houari, A. Tounsi, O.A. Bég, S. Mahmoud, Steel Compos. Struct. 18, 425 (2015)

    Article  Google Scholar 

  13. I. Belkorissat, M.S.A. Houari, A. Tounsi, E. Bedia, S. Mahmoud, Steel Compos. Struct. 18, 1063 (2015)

    Article  Google Scholar 

  14. F. Bounouara, K.H. Benrahou, I. Belkorissat, A. Tounsi, Steel Compos. Struct. 20, 227 (2016)

    Article  Google Scholar 

  15. K. Bouafia, A. Kaci, M.S.A. Houari, A. Benzair, A. Tounsi, Smart Struct. Syst. 19, 115 (2017)

    Article  Google Scholar 

  16. W.A. Bedia, A. Benzair, A. Semmah, A. Tounsi, S. Mahmoud, Braz. J. Phys. 45, 225 (2015)

    Article  ADS  Google Scholar 

  17. M. Zidour, K.H. Benrahou, A. Semmah, M. Naceri, H.A. Belhadj, K. Bakhti et al., Comput. Mater. Sci. 51, 252 (2012)

    Article  Google Scholar 

  18. C. Wang, Y.Y. Zhang, S. Kitipornchai, Int. J. Struct. Stab. Dyn. 7, 555 (2007)

    Article  MathSciNet  Google Scholar 

  19. C.W. Lim, Y. Yang, J. Comput. Theor. Nanosci. 7, 988 (2010)

    Article  Google Scholar 

  20. A. Benzair, A. Tounsi, A. Besseghier, H. Heireche, N. Moulay, L. Boumia, J. Phys. D 41, 225404 (2008)

    Article  ADS  Google Scholar 

  21. A. Tounsi, M.S.A. Houari, S. Benyoucef, Aerospace Sci. Technol. 24, 209 (2013)

    Article  Google Scholar 

  22. A. Attia, A. Tounsi, E.A. Bedia, S. Mahmoud, Steel Compos. Struct. 18, 187 (2015)

    Article  Google Scholar 

  23. B. Bouderba, M.S.A. Houari, A. Tounsi, Steel Compos. Struct. 14, 85 (2013)

    Article  Google Scholar 

  24. M. Bourada, A. Kaci, M.S.A. Houari, A. Tounsi, Steel Compos. Struct. 18, 409 (2015)

    Article  Google Scholar 

  25. A.A. Bousahla, S. Benyoucef, A. Tounsi, S. Mahmoud, Struct. Eng. Mech. 60, 313 (2016)

    Article  Google Scholar 

  26. M.S.A. Houari, A. Tounsi, A. Bessaim, S. Mahmoud, Steel Compos. Struct. 22, 257 (2016)

    Article  Google Scholar 

  27. S.A. Yahia, H.A. Atmane, M.S.A. Houari, A. Tounsi, Struct. Eng. Mech. 53, 1143 (2015)

    Article  Google Scholar 

  28. M. Zidi, A. Tounsi, M.S.A. Houari, O.A. Bég, Aerospace Sci. Technol. 34, 24 (2014)

    Article  Google Scholar 

  29. H. Hebali, A. Tounsi, M.S.A. Houari, A. Bessaim, E.A.A. Bedia, J. Eng. Mech. 140, 374 (2014)

    Article  Google Scholar 

  30. A. Hamidi, M.S.A. Houari, S. Mahmoud, A. Tounsi, Steel Compos. Struct. 18, 235 (2015)

    Article  Google Scholar 

  31. M. Bennoun, M.S.A. Houari, A. Tounsi, Mech. Adv. Mater. Struct. 23, 423 (2016)

    Article  Google Scholar 

  32. Z. Belabed, M.S.A. Houari, A. Tounsi, S. Mahmoud, O.A. Bég, Composites Part B 60, 274 (2014)

    Article  Google Scholar 

  33. K. Kiani, Physica E 42, 2391 (2010)

    Article  ADS  Google Scholar 

  34. T. Murmu, S. Pradhan, Comput. Mater. Sci. 46, 854 (2009)

    Article  Google Scholar 

  35. S. Pradhan, T. Murmu, J. Appl. Phys. 105, 124306 (2009)

    Article  ADS  Google Scholar 

  36. J. Bocko, P. Lengvarský, Am. J. Mech. Eng. 2, 195 (2014)

    Article  Google Scholar 

  37. A. Tylikowski, J. Therm. Stress. 35, 281 (2012)

    Article  Google Scholar 

  38. M.A. Hawwa, H.M. Al-Qahtani, Comput. Mater. Sci. 48, 140 (2010)

    Article  Google Scholar 

  39. C. Thongyothee, S. Chucheepsakul, T. Li, Adv. Mater. Res. 747, 257 (2013)

    Article  Google Scholar 

  40. R. Artan, L. Lehmann, J. Comput. Theor. Nanosci. 6, 653 (2009)

    Article  Google Scholar 

  41. I. Senjanović, M. Tomić, N. Hadžić, J. Mech. Behav. Mater. 23, 109 (2014)

    Google Scholar 

  42. P. Karaoglu, M. Aydogdu, Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci. 224, 497 (2010)

    Article  Google Scholar 

  43. A. Pirmohammadi, M. Pourseifi, O. Rahmani, S. Hoseini, Appl. Phys. A 117, 1547 (2014)

    Article  Google Scholar 

  44. M. Pourseifi, O. Rahmani, S. Hoseini, Meccanica 50, 1351 (2015)

    Article  MathSciNet  Google Scholar 

  45. O. Rahmani, S.A.H. Hosseini, M.H. Noroozi Moghaddam, I. Fakhari Golpayegani, Int. J. Appl. Mech. 07, 1550036 (2015)

    Article  Google Scholar 

  46. A.A. Jandaghian, O. Rahmani, J. Mech. 32, 143 (2016)

    Article  Google Scholar 

  47. S.A.H. Hosseini, O. Rahmani, Meccanica 52, 1441 (2017)

    Article  MathSciNet  Google Scholar 

  48. A. Jandaghian, O. Rahmani, Smart Mater. Struct. 25, 035023 (2016)

    Article  ADS  Google Scholar 

  49. O. Rahmani, S.A.H. Hosseini, H. Hayati, Mod. Phys. Lett. B 30, 1650136 (2016)

    Article  ADS  Google Scholar 

  50. A.A. Jandaghian, O. Rahmani, J. Mech. Sci. Technol. 29, 3175 (2015)

    Article  Google Scholar 

  51. S. Hosseini, O. Rahmani, Int. J. Struct. Stab. Dyn. 16, 1550077 (2016)

    Article  MathSciNet  Google Scholar 

  52. S.A.H. Hosseini, O. Rahmani, J. Therm. Stresses 39, 1252 (2016)

    Article  Google Scholar 

  53. A. Jandaghian, O. Rahmani, Superlattices Microstruct. 100, 57 (2016)

    Article  ADS  Google Scholar 

  54. Y. Zhang, G. Liu, X. Xie, Phys. Rev. B 71, 195404 (2005)

    Article  ADS  Google Scholar 

  55. P. Lu, H. Lee, C. Lu, P. Zhang, J. Appl. Phys. 99, 073510 (2006)

    Article  ADS  Google Scholar 

  56. L. Fryba, Vibration of Solids and Structures under Moving Loads (Noordhoff International, Groningen, The Netherlands, 1972)

  57. M. Simşek, Comput. Mater. Sci. 50, 2112 (2011)

    Article  Google Scholar 

  58. Q. Wang, K. Liew, Phys. Lett. A 363, 236 (2007)

    Article  ADS  Google Scholar 

  59. S. Gupta, F. Bosco, R. Batra, Comput. Mater. Sci. 47, 1049 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Rahmani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahmani, O., Shokrnia, M., Golmohammadi, H. et al. Dynamic response of a single-walled carbon nanotube under a moving harmonic load by considering modified nonlocal elasticity theory. Eur. Phys. J. Plus 133, 42 (2018). https://doi.org/10.1140/epjp/i2018-11868-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2018-11868-4

Navigation