Skip to main content

Advertisement

Log in

Performance evaluation and comparison of three-terminal energy selective electron devices with different connective ways and filter configurations

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

Three-terminal energy selective electron (ESE) devices consisting of three electronic reservoirs connected by two energy filters and an electronic conductor with negligible resistance may work as ESE refrigerators and amplifiers. They have three possible connective ways for the electronic conductor and six electronic transmission forms. The configuration of energy filters may be described by the different transmission functions such as the rectangular and Lorentz transmission functions. The ESE devices with three connective ways can be, respectively, regarded as three equivalent hybrid systems composed of an ESE heat engine and an ESE refrigerator/heat pump. With the help of the theory of the ESE devices operated between two electronic reservoirs, the coefficients of performance and cooling rates (heat-pumping rates) of hybrid systems are directly derived. The general performance characteristics of hybrid systems are revealed. The optimal regions of these devices are determined. The performances of the devices with three connective ways of the electronic conductor and two configurations of energy filters are compared in detail. The advantages and disadvantages of each of three-terminal ESE devices are expounded. The results obtained here may provide some guidance for the optimal design and operation of three-terminal ESE devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Benenti, G. Casati, K. Saito, R.S. Whitney, Phys. Rep. 694, 1 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  2. B. Sothmann, R. Sánchez, A.N. Jordan, Nanotechnology 26, 032001 (2015)

    Article  ADS  Google Scholar 

  3. J.F.G. Santos, A.E. Bernardini, Eur. Phys. J. Plus 132, 260 (2017)

    Article  Google Scholar 

  4. X.L. Huang, Y. Liu, Z. Wang, X.Y. Niu, Eur. Phys. J. Plus 129, 4 (2014)

    Article  ADS  Google Scholar 

  5. J.R. Prance, C.G. Smith, J.P. Griffiths, S.J. Chorley, D. Anderson, G.A.C. Jones, I. Farrer, D.A. Ritchie, Phys. Rev. Lett. 102, 146602 (2009)

    Article  ADS  Google Scholar 

  6. T.E. Humphrey, R. Newbury, R.P. Taylor, H. Linke, Phys. Rev. Lett. 89, 116801 (2002)

    Article  ADS  Google Scholar 

  7. G.D. Mahan, J.O. Sofo, Proc. Natl. Acad. Sci. U.S.A. 93, 7436 (1996)

    Article  ADS  Google Scholar 

  8. M.S. Dresselhaus, G. Chen, M.Y. Tang, R.G. Yang, H. Lee, D.Z. Wang, P. Gogna, Adv. Mater. 19, 1043 (2007)

    Article  Google Scholar 

  9. J.P. Pekola, F. Giazotto, O.P. Saira, Phys. Rev. Lett. 98, 037201 (2007)

    Article  ADS  Google Scholar 

  10. D. Segal, Phys. Rev. Lett. 100, 105901 (2008)

    Article  ADS  Google Scholar 

  11. M. Galperin, K. Saito, A.V. Balatsky, A. Nitzan, Phys. Rev. B 80, 115427 (2009)

    Article  ADS  Google Scholar 

  12. H. Wang, G. Wu, Y. Fu, D. Chen, J. Appl. Phys. 111, 094318 (2012)

    Article  ADS  Google Scholar 

  13. X. Luo, J. He, K. Long, J. Wang, N. Liu, T. Qiu, J. Appl. Phys. 115, 244306 (2014)

    Article  ADS  Google Scholar 

  14. F. Chi, L.L. Sun, Y. Guo, J. Appl. Phys. 116, 164305 (2014)

    Article  ADS  Google Scholar 

  15. T.E. Humphrey, PhD Thesis, University of New South Wales, Australia (2003)

  16. Y. Yu, Z. Ding, L. Chen, W. Wang, F. Sun, Energy 107, 287 (2016)

    Article  Google Scholar 

  17. G. Su, Y. Pan, Y. Zhang, T.M. Shih, J. Chen, Energy 113, 723 (2016)

    Article  Google Scholar 

  18. G. Su, T. Liao, L. Chen, J. Chen, Energy 101, 421 (2016)

    Article  Google Scholar 

  19. S. Su, Y. Zhang, J. Chen, T.M. Shih, Sci. Rep. 6, 21425 (2016)

    Article  ADS  Google Scholar 

  20. G. Su, Y. Zhang, L. Cai, S. Su, J. Chen, Energy 90, 1842 (2015)

    Article  Google Scholar 

  21. Z. Ding, L. Chen, W. Wang, Y. Ge, F. Sun, Physica A 431, 94 (2015)

    Article  ADS  Google Scholar 

  22. S. Su, J. Guo, G. Su, J. Chen, Energy 44, 570 (2012)

    Article  Google Scholar 

  23. Z. Ding, L. Chen, Y. Ge, F. Sun, Physica A 447, 49 (2016)

    Article  ADS  Google Scholar 

  24. J. Zhou, L. Chen, Z. Ding, F. Sun, Energy 111, 306 (2016)

    Article  Google Scholar 

  25. Z. Ding, L. Chen, F. Sun, Sci. China Phys. Mech. Astron. 54, 1925 (2011)

    Article  ADS  Google Scholar 

  26. Z. Ding, L. Chen, F. Sun, Appl. Math. Model. 35, 276 (2011)

    Article  MathSciNet  Google Scholar 

  27. C. Li, R. Li, X. Luo, L. Ma, J. He, Int. J. Thermodyn. 17, 153 (2014)

    Google Scholar 

  28. J. He, B. He, Acta. Phys. Sin. 59, 2345 (2010)

    Google Scholar 

  29. L. Chen, Z. Ding, F. Sun, Energy 36, 4011 (2011)

    Article  Google Scholar 

  30. S. Su, J. Chen, IEEE Trans. Ind. Electron. 62, 3569 (2015)

    Google Scholar 

  31. S. Su, T. Liao, X. Chen, J. Chen, IEEE J. Quantum Electron. 51, 1 (2015)

    Article  Google Scholar 

  32. S. Limpert, S. Bremner, H. Linke, New J. Phys. 17, 095004 (2015)

    Article  ADS  Google Scholar 

  33. R. Sánchez, M. Büttiker, Phys. Rev. B 83, 085428 (2011)

    Article  ADS  Google Scholar 

  34. F. Mazza, R. Bosisio, G. Benenti, V. Giovannetti, R. Fazio, F. Taddei, New J. Phys. 16, 085001 (2014)

    Article  ADS  Google Scholar 

  35. H.L. Edward, Q. Niu, A.L. De Lozanne, Appl. Phys. Lett. 63, 1815 (1993)

    Article  ADS  Google Scholar 

  36. Y. Zhang, C. Huang, J. Wang, G. Lin, J. Chen, Energy 85, 200 (2015)

    Article  Google Scholar 

  37. Y. Zhang, G. Lin, J. Chen, Phys. Rev. E 91, 052118 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  38. D. Vashaee, A. Shakouri, Phys. Rev. Lett. 92, 106103 (2004)

    Article  ADS  Google Scholar 

  39. J. Chen, Z. Yan, J. Chem. Phys. 90, 4951 (1989)

    Article  ADS  Google Scholar 

  40. J. Zhou, L. Chen, Z. Ding, F. Sun, Eur. Phys. J. Plus 131, 149 (2016)

    Article  Google Scholar 

  41. Z. Ding, L. Chen, F. Sun, J. Energy Inst. 85, 227 (2012)

    Article  Google Scholar 

  42. J. Chen, Z. Yan, Phys. Rev. A 39, 4140 (1989)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanli Peng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, W., Zhang, Y., Yang, Z. et al. Performance evaluation and comparison of three-terminal energy selective electron devices with different connective ways and filter configurations. Eur. Phys. J. Plus 133, 38 (2018). https://doi.org/10.1140/epjp/i2018-11860-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2018-11860-0

Navigation