Abstract.
This paper investigates the chaos control for a class of variable-order fractional chaotic systems using robust control strategy. The variable-order fractional models of the non-autonomous biological system, the King Cobra chaotic system, the Halvorsen’s attractor and the Burke-Shaw system, have been derived using the fractional-order derivative with Mittag-Leffler in the Liouville-Caputo sense. The fractional differential equations and the control law were solved using the Adams-Bashforth-Moulton algorithm. To test the control stability efficiency, different statistical indicators were introduced. Finally, simulation results demonstrate the effectiveness of the proposed robust control.
This is a preview of subscription content, access via your institution.
References
D. Kumar, R.P. Agarwal, J. Singh, J. Comput. Appl. Math. (2017) https://doi.org/10.1016/j.cam.2017.03.011
K.M. Owolabi, A. Atangana, Adv. Differ. Equ. 2017, 223 (2017)
D. Kumar, J. Singh, D. Baleanu, Rom. Rep. Phys. 69, 103 (2017)
K.M. Owolabi, Commun. Nonlinear Sci. Numer. Simul. 44, 304 (2017)
K.M. Owolabi, A. Atangana, Chaos, Solitons Fractals 99, 171 (2017)
H. Singh, H.M. Srivastava, D. Kumar, Chaos, Solitons Fractals 103, 131 (2017)
K.M. Owolabi, A. Atangana, Eur. Phys. J. Plus 131, 335 (2016)
K.M. Owolabi, Chaos, Solitons Fractals 103, 544 (2017)
K.M. Owolabi, Chaos, Solitons Fractals 93, 89 (2016)
Y. Khan, M. Fardi, K. Sayevand, M. Ghasemi, Neural Comput. Appl. 24, 187 (2014)
Y. Khan, S.P. Ali Beik, K. Sayevand, A. Shayganmanesh, Quaest. Math. 38, 41 (2015)
J. Singh, D. Kumar, R. Swroop, S. Kumar, Neur. Comput. Appl. (2017) https://doi.org/10.1007/s00521-017-2909-8
S. Kumar, A. Kumar, Z.M. Odibat, Math. Methods Appl. Sci. 40, 4134 (2017)
A. Atangana, A. Secer, Abstr. Appl. Anal. 2013, 279681 (2013)
A. Atangana, D. Baleanu, Therm. Sci. 20, 763 (2016)
S.G. Samko, Anal. Math. 21, 213 (1995)
B.S.T. Alkahtani, I. Koca, A. Atangana, J. Nonlinear Sci. Appl. 9, 4867 (2016)
A. Atangana, J. Comput. Phys. 293, 104 (2015)
H. Sun, W. Chen, C. Li, Y. Chen, Physica A 389, 2719 (2010)
A. Atangana, J.F. Botha, Bound. Value Probl. 2013, 53 (2013)
A. Atangana, R.T. Alqahtani, J. Comput. Theor. Nanosci. 13, 2710 (2016)
A. Atangana, J. Comput. Phys. 293, 104 (2015)
K. Rajagopal, S. Vaidyanathan, A. Karthikeyan, P. Duraisamy, Electr. Eng. 99, 721 (2017)
H. Wang, Z.Z. Han, Q.Y. Xie, W. Zhang, Commun. Nonlinear Sci. Numer. Simul. 14, 1410 (2009)
C. Yin, S.M. Zhong, W.F. Chen, Commun. Nonlinear Sci. Numer. Simul. 17, 356 (2012)
X.Y. Wang, Y.J. He, M.J. Wang, Nonlinear Anal. 71, 6126 (2009)
A. Mohammadzadeh, S. Ghaemi, Neurocomputing 191, 200 (2016)
C. Li, K. Su, J. Zhang, D. Wei, Optik 124, 5807 (2013)
M. Roopaei, B.R. Sahraei, T.C. Lin, Commun. Nonlinear Sci. Numer. Simul. 15, 4158 (2010)
R. Zhang, S. Yang, Nonlinear Dyn. 69, 983 (2012)
A. Ouannas, A.T. Azar, S. Vaidyanathan, Math. Methods Appl. Sci. 40, 1804 (2017)
H. Delavari, Int. J. Dyn. Control 5, 102 (2017)
Z. Hammouch, T. Mekkaoui, Nonauton. Dyn. Syst. (2014) https://doi.org/10.2478/msds-2014-0001
F. Kaiser, Radio Sci. 17, 17 (1982)
O. Olusola, E. Vincent, N. Njah, E. Ali, Int. J. Nonlinear Sci. 11, 121 (2011)
A. Abooee, H.A. Yaghini-Bonabi, M.R. Jahed-Motlagh, Commun. Nonlinear Sci. Numer. Simul. 18, 1235 (2013)
P. Muthukumar, P. Balasubramaniam, K. Ratnavelu, Chaos 24, 033105 (2014)
A.T. Azar, S. Vaidyanathan (Editors), Advances in Chaos Theory and Intelligent Control, in Studies in Fuzziness and Soft Computing, Vol. 337 (Springer, Switzerland, 2016)
S. Panchev, T. Spassova, N.K. Vitanov, Chaos, Solitons Fractals 33, 1658 (2007)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Zuñiga-Aguilar, C.J., Gómez-Aguilar, J.F., Escobar-Jiménez, R.F. et al. Robust control for fractional variable-order chaotic systems with non-singular kernel. Eur. Phys. J. Plus 133, 13 (2018). https://doi.org/10.1140/epjp/i2018-11853-y
Received:
Accepted:
Published:
DOI: https://doi.org/10.1140/epjp/i2018-11853-y