Skip to main content
Log in

Fast and high-order numerical algorithms for the solution of multidimensional nonlinear fractional Ginzburg-Landau equation

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

In this paper we propose two fast and accurate numerical methods for the solution of multidimensional space fractional Ginzburg-Landau equation (FGLE). In the presented methods, to avoid solving a nonlinear system of algebraic equations and to increase the accuracy and efficiency of method, we split the complex problem into simpler sub-problems using the split-step idea. For a homogeneous FGLE, we propose a method which has fourth-order of accuracy in time component and spectral accuracy in space variable and for nonhomogeneous one, we introduce another scheme based on the Crank-Nicolson approach which has second-order of accuracy in time variable. Due to using the Fourier spectral method for fractional Laplacian operator, the resulting schemes are fully diagonal and easy to code. Numerical results are reported in terms of accuracy, computational order and CPU time to demonstrate the accuracy and efficiency of the proposed methods and to compare the results with the analytical solutions. The results show that the present methods are accurate and require low CPU time. It is illustrated that the numerical results are in good agreement with the theoretical ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Akhmediev, A. Ankiewicz, Dissipative Solitons: From Optics to Biology and Medicine (Springer, Berlin, 2008)

  2. I.S. Aranson, L. Kramer, Rev. Mod. Phys. 74, 99 (2002)

    Article  ADS  Google Scholar 

  3. V.L. Ginzburg, L.D. Landau, J. Exp. Theor. Phys. 20, 1064 (1950)

    Google Scholar 

  4. A. Shokri, F. Afshari, Comput. Phys. Commun. 197, 43 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  5. A. Shokri, M. Dehghan, Comput. Model. Eng. Sci. 84, 333 (2012)

    Google Scholar 

  6. A.M. Wazwaz, Appl. Math. Lett. 19, 1007 (2006)

    Article  MathSciNet  Google Scholar 

  7. A.M. Wazwaz, Partial Differential Equations and Solitary Waves Theory (Springer, New York, 2009)

  8. M. Dehghan, M. Abbaszadeh, to be published in Alex. Eng. J

  9. H. Khosravian-Arab, M. Dehghan, M.R. Eslahchi, J. Comput. Phys. 338, 527 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  10. H. Khosravian-Arab, M. Dehghan, M.R. Eslahchi, J. Comput. Phys. 299, 526 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  11. V. Tarasov, G. Zaslavsky, Phys. A 354, 249 (2005)

    Article  Google Scholar 

  12. V. Tarasov, G. Zaslavsky, Chaos 16, 023110 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  13. P. Wang, C. Huang, J. Comput. Phys. 312, 31 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  14. A. Milovanov, J. Rasmussen, Phys. Lett. A 337, 75 (2005)

    Article  ADS  Google Scholar 

  15. A. Mvogo, A. Tambue, G. Ben-Bolie, T. Kofane, arXiv:1411.7983 (2014)

  16. H. Lu, S. Lu, Z. Feng, Int. J. Bifurc. Chaos 23, 1350202 (2013)

    Article  Google Scholar 

  17. X. Pu, B. Guo, Appl. Anal. 92, 318 (2013)

    Article  MathSciNet  Google Scholar 

  18. V. Tarasov, J. Phys. A 39, 8395 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  19. B. Guo, Z. Huo, Fract. Calc. Appl. Anal. 16, 226 (2013)

    MathSciNet  Google Scholar 

  20. V. Millot, Y. Sire, Arch, Ration. Mech. Anal. 215, 125 (2015)

    Article  MathSciNet  Google Scholar 

  21. Z.P. Hao, Z.Z. Sun, Numer. Methods Partial Differ. Equ. 33, 105 (2017)

    Article  Google Scholar 

  22. M. Li, C. Huanga, N. Wang, Appl. Numer. Math. 118, 131 (2017)

    Article  MathSciNet  Google Scholar 

  23. N. Wang, C. Huang, Technical Report (May 2017) https://doi.org/10.13140/RG.2.2.13832.01288

  24. W. Chen, G.F. Pang, J. Comput. Phys. 309, 350 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  25. A. Bueno-Orovio, D. Kay, K. Burrage, BIT Numer. Math. 54, 937 (2014)

    Article  Google Scholar 

  26. S.Y. Zhai, Z.F. Weng, X.L. Feng, Int. J. Heat. Mass Transfer 87, 111 (2015)

    Article  Google Scholar 

  27. G.M. Muslu, H.A. Erbay, Math. Comput. Simul. 67, 581 (2005)

    Article  Google Scholar 

  28. H. Yoshida, Phys. Lett. A 150, 262 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  29. M. Suzuki, Phys. Lett. A 165, 387 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  30. G. Strang, SIAM J. Numer. Anal. 5, 506 (1968)

    Article  ADS  MathSciNet  Google Scholar 

  31. M. Dehghan, A. Taleei, Comput. Phys. Commun. 181, 43 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akbar Mohebbi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohebbi, A. Fast and high-order numerical algorithms for the solution of multidimensional nonlinear fractional Ginzburg-Landau equation. Eur. Phys. J. Plus 133, 67 (2018). https://doi.org/10.1140/epjp/i2018-11846-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2018-11846-x

Navigation