q-deformed superstatistics of the Schrödinger equation in commutative and noncommutative spaces with magnetic field

Regular Article
  • 14 Downloads

Abstract.

We discuss the q-deformed algebra and study the Schrödinger equation in commutative and noncommutative spaces, under an external magnetic field. In this work, we obtain the energy spectrum by an analytical method and the thermodynamic properties of the system by using the q-deformed superstatistics are calculated. Actually, we derive a generalized version of the ordinary superstatistic for the non-equilibrium systems. Also, different effective Boltzmann factor descriptions are derived. In addition, we discuss about the results for various values of \( \theta\) in commutative and noncommutative spaces and, to illustrate the results, some figures are plotted.

References

  1. 1.
    C. Tsallis, J. Stat. Phys. 52, 479 (1988)ADSCrossRefGoogle Scholar
  2. 2.
    E.M. Curado, C. Tsallis, J. Phys. A 24, L69 (1991)ADSCrossRefGoogle Scholar
  3. 3.
    C. Tsallis, R.S. Mendes, A.R. Plastino, Physica A 261, 534 (1998)ADSCrossRefGoogle Scholar
  4. 4.
    S. Abe, Phys. Lett. A 224, 326 (1997)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    G. Kaniadakis, Phys. Rev. E 66, 056125 (2002)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    J. Naudts, Physica A 340, 32 (2004)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    G. Kaniadakis, M. Lissia, A.M. Scarfone, Physica A 340, 41 (2004)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    G. Kaniadakis, M. Lissia, A.M. Scarfone, Phys. Rev. E 71, 046128 (2005)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    A.M. Scarfone, T. Wada, Phys. Rev. E 72, 026123 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    A. Lavagno, A.M. Scarfone, N.P. Swamy, Eur. Phys. J. B 50, 351 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    A. Lavagno, A.M. Scarfone, P. Narayana Swamy, J. Phys. A 40, 8635 (2007)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    H.B. Callen, Thermodynamics and an Introduction to Thermostatistics (Wiley, New York, 1985)Google Scholar
  13. 13.
    E.G.D. Cohen, Pramana 64, 635 (2005) Boltzmann award lecture at Statphys 22, Bangalore (2005)ADSCrossRefGoogle Scholar
  14. 14.
    H. Touchette, C. Beck, Phys. Rev. E 71, 016131 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    P.H. Chavanis, Physica A 359, 177 (2006) cond-mat/0409511ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    C. Vignat, A. Plastino, A.R. Plastino, cond-mat/0505580Google Scholar
  17. 17.
    C. Beck, Phys. Rev. Lett. 87, 180601 (2001)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    C. Beck, E.G.D. Cohen, Physica A 322, 267 (2003)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    C. Beck, Physica A 331, 173 (2004)ADSCrossRefGoogle Scholar
  20. 20.
    S. Rizzo, A. Rapisarda, cond-mat/0406684Google Scholar
  21. 21.
    H. Hasegawa, cond-mat/0501429Google Scholar
  22. 22.
    J.P. Bouchaud, M. Potters, Theory of Financial Risk and Derivative Pricing: From Statistical Physics to Risk Management (Cambridge University Press, Cambridge, 2003)Google Scholar
  23. 23.
    M. Ausloos, K. Ivanova, Phys. Rev. E 68, 046122 (2003)ADSCrossRefGoogle Scholar
  24. 24.
    C. Beck, Continuum Mech. Thermodyn. 16, 293 (2004)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    C. Beck, E.G.D. Cohen, Physica A 344, 393 (2004)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    C. Tsallis, A.M.C. Souza, Phys. Rev. E 67, 026106 (2003)ADSCrossRefGoogle Scholar
  27. 27.
    C. Beck, Europhys. Lett. 64, 151 (2003)ADSCrossRefGoogle Scholar
  28. 28.
    A. Reynolds, Phys. Rev. Lett. 91, 084503 (2003)ADSCrossRefGoogle Scholar
  29. 29.
    B. Castaing, Y. Gagne, E.J. HopHnger, Physica D 46, 177 (1990)ADSCrossRefGoogle Scholar
  30. 30.
    N.A.J. Hastings, J.B. Peacock, Statistical Distributions: A Handbook for Students and Practitioners (Butterworth, London, 1974)Google Scholar
  31. 31.
    N.G. van Kampen, Stochastic Processes in Physics and Chemistry, revised and enlarged edition (North-Holland, Amsterdam, 1992)Google Scholar
  32. 32.
    A.G. Bashkirov, A.D. Sukhanov, J. Exp. Theor. Phys. 95, 440 (2002)ADSCrossRefGoogle Scholar
  33. 33.
    P. Allegrini, F. Barbi, P. Grigolini, P. Paradisi, cond-mat/0503335Google Scholar
  34. 34.
    J. Luczka, B. Zaborek, Acta Phys. Pol. B 35, 2151 (2004)ADSGoogle Scholar
  35. 35.
    N. Mordant, A.M. Crawford, E. Bodenschatz, Physica D 193, 245 (2004)ADSCrossRefGoogle Scholar
  36. 36.
    S. Jung, H.L. Swinney, Phys. Rev. E 72, 026304 (2005) cond-mat/0502301ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    H. Hassanabadi, Z. Derakhshani, S. Zarrinkamar, Acta Phys. Pol. 129, 3 (2016)CrossRefGoogle Scholar
  38. 38.
    W. Heisenberg, Z. Phys. 33, 879 (1925)ADSCrossRefGoogle Scholar
  39. 39.
    N. Seiberg, E. Witten, JHEP 09, 032 (1999)ADSCrossRefGoogle Scholar
  40. 40.
    M. Chaichian, M.M. Sheikh-Jabbari, A. Tureanu, Phys. Rev. Lett. 86, 2716 (2001)ADSCrossRefGoogle Scholar
  41. 41.
    K. Li, J. Wang, Eur. Phys. J. C 50, 1007 (2007)ADSCrossRefGoogle Scholar
  42. 42.
    S.A. Alavi, Mod. Phys. Lett. A 22, 377 (2007)ADSCrossRefGoogle Scholar
  43. 43.
    O.F. Dayi, A. Jellal, J. Math. Phys. 51, 063522 (2010)ADSMathSciNetCrossRefGoogle Scholar
  44. 44.
    H. Hassanabadi, S.S. Hosseini, S. Zarrinkamar, Chin. Phys. C 38, 063104 (2014)ADSCrossRefGoogle Scholar
  45. 45.
    H. Hassanabadi, S.S. Hosseini, A. Boumali, S. Zarrinkamar, J. Math. Phys. 55, 033502 (2014)ADSMathSciNetCrossRefGoogle Scholar
  46. 46.
    H. Sobhani, W.S. Chung, H. Hassanabadi, Adv. High Energy Phys. 2017, 9530874 (2017)CrossRefGoogle Scholar
  47. 47.
    W.S. Chung, H. Sobhani, H. Hassanabadi, Eur. Phys. Plus 132, 398 (2017)CrossRefGoogle Scholar
  48. 48.
    H. Hassanabadi, Z. Molaee, S. Zarrinkamar, Eur. Phys. J. C 72, 2217 (2012)ADSCrossRefGoogle Scholar
  49. 49.
    H. Hassanabadi, S.S. Hosseini, A. Boumali, S. Zarrinkamar, J. Math. Phys. 55, 033502 (2014)ADSMathSciNetCrossRefGoogle Scholar
  50. 50.
    M. Baiesi, M. Paczuski, A.L. Stella, cond-mat/0411342Google Scholar
  51. 51.
    Hadi Sobhani, Hassan Hassanabadi, Won Sang Chung, Effects of cosmic string framework on the thrmodynamical properties of anharmonic oscillator using the ordinary statistic and the q-deformed superstatistics approaches, submitted to Eur. Phys. J. C (2017)Google Scholar
  52. 52.
    C. Tsallis, Braz. J. Phys. 29, 1 (1999)ADSCrossRefGoogle Scholar
  53. 53.
    R.K. Pathria, Statistical Mechanics, 1st ed. (Pergamon Press, Oxford, 1972)Google Scholar
  54. 54.
    G.V. Ortega, L.A.A. Hernandez, submitted to Int. J. Quantum Chem. (2017)Google Scholar
  55. 55.
    A. Boumali, H. Hassanabadi, Eur. Phys. J. Plus 128, 124 (2013)CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • S. Sargolzaeipor
    • 1
  • H. Hassanabadi
    • 1
  • W. S. Chung
    • 2
  1. 1.Faculty of PhysicsShahrood University of TechnologyShahroodIran
  2. 2.Department of Physics and Research Institute of Natural Science, College of Natural ScienceGyeongsang National UniversityJinjuKorea

Personalised recommendations