Skip to main content
Log in

Motion through a non-homogeneous porous medium: Hydrodynamic permeability of a membrane composed of cylindrical particles

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

The present problem is concerned with the flow of a viscous steady incompressible fluid through a non-homogeneous porous medium. Here, the non-homogeneous porous medium is a membrane built up by cylindrical particles. The flow outside the membrane is governed by the Stokes equation and the flow through the non-homogeneous porous membrane composed by cylindrical particles is governed by Darcy’s law. In this work, we discussed the effect of various fluid parameters like permeability parameter \( k_{0}\), discontinuity coefficient at fluid-non homogeneous porous interface, viscosity ratio of viscous incompressible fluid region and non-homogeneous porous region, etc. on hydrodynamic permeability of a membrane, stress and on velocity profile. The comparative study for hydrodynamic permeability of membrane built up by non-homogeneous porous cylindrical particles and porous cylindrical shell enclosing a cylindrical cavity has been studied. The effects of various fluid parameters on the streamlines flow patterns are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. G.G. Stokes, On the Theories of the Internal Friction of Fluids in Motion, and of the Equilibrium and Motion of Elastic Bodies (Cambridge Philosophical Society, 1851)

  2. H.P.G. Darcy, Les fontaines publiques de la ville de Dijon Paris (Victor Dalmont, 1856)

  3. D.D. Joseph, L.N. Tao, Z. Angew. Math. Mech. 44, 361 (1964)

    Article  Google Scholar 

  4. D.A. Nield, A. Bejan, Convection in Porous Media (Springer, New York, 1999)

  5. L. Preziosi, A. Farina, Int. J. Non-Linear Mech. 37, 485 (2002)

    Article  Google Scholar 

  6. G.S. Beavers, D.D. Joseph, J. Fluid Mech. 30, 197 (1967)

    Article  ADS  Google Scholar 

  7. I.P. Jones, Proc. Camb. Philos. Soc. 73, 231 (1973)

    Article  ADS  Google Scholar 

  8. J. Masliyah, G. Neale, K. Malysa, T.V. de Ven, Chem. Eng. Sci. 4, 245 (1987)

    Article  Google Scholar 

  9. Y. Qin, P.N. Kaloni, Z. Angew. Math. Mech. 73, 77 (1993)

    Article  MathSciNet  Google Scholar 

  10. W.W. Hackborn, Can. Appl. Math. Quart. 8, 171 (2000)

    Article  MathSciNet  Google Scholar 

  11. I.B. Stechkina, Fluid Dyn. 14, 912 (1979)

    Article  ADS  Google Scholar 

  12. I. Pop, P. Cheng, Int. J. Eng. Sci. 30, 257 (1992)

    Article  Google Scholar 

  13. M.P. Singh, J.L. Gupta, Z. Angew. Math. Mech. 54, 17 (1971)

    Article  Google Scholar 

  14. S. Deo, Sadhana 29, 381 (2004)

    Article  Google Scholar 

  15. M. Ellero, M. Kroger, S. Hess, J. Non-Newtonian Fluid Mech. 105, 35 (2002)

    Article  Google Scholar 

  16. A.S. Kim, R. Yuan, J. Membr. Sci. 249, 89 (2005)

    Article  Google Scholar 

  17. E.I. Saad, Meccanica 48, 1747 (2013)

    Article  MathSciNet  Google Scholar 

  18. D. Palaniappan, K. Archana, S.K. Khan, Z. Angew. Math. Mech. 77, 791 (1997)

    Article  MathSciNet  Google Scholar 

  19. S.M. Datta, Shukla, Cal. Math. Soc. 95, 63 (2003)

    Google Scholar 

  20. P.D. Verma, B.S. Bhatt, J. Pure Appl. Math. 15, 908 (1976)

    Google Scholar 

  21. S. Whitaker, Transp. Porous Media 1, 3 (1986)

    Article  Google Scholar 

  22. F.R. Mandujano, F. Peralta, Rev. Mex. Fis. 51, 87 (2005)

    Google Scholar 

  23. S. Deo, P.K. Yadav, Int. J. Math. Math. Sci. 2008, 651910 (2008)

    Article  Google Scholar 

  24. N.S. Cheng, Z.Y. Hao, S.K. Tan, Exp. Therm. Fluid Sci. 32, 1538 (2008)

    Article  Google Scholar 

  25. S. Deo, P.K. Yadav, A. Tiwari, Appl. Math. Mod. 34, 1329 (2010)

    Article  Google Scholar 

  26. S. Deo, A.N. Filippov, A. Tiwari, S.I. Vasin, V. Starov, Adv. Colloid Interface Sci. 164, 21 (2011)

    Article  Google Scholar 

  27. J. Prakash, G.P. Raja Sekhar, Meccanica 47, 1079 (2012)

    Article  MathSciNet  Google Scholar 

  28. O.V. Grigoreva, Sh.Kh. Zaripov, Russ. Aeronaut. 55, 19 (2012)

    Article  Google Scholar 

  29. P.K. Yadav, S. Deo, Meccanica 47, 1499 (2012)

    Article  MathSciNet  Google Scholar 

  30. P.K. Yadav, Meccanica 48, 1607 (2013)

    Article  MathSciNet  Google Scholar 

  31. M.S. Valipour, S. Rashidi, M. Bovand, R. Masoodi, Eur. J. Mech. 46, 74 (2014)

    Article  Google Scholar 

  32. A. Barletta, L. Storesletten, Int. J. Therm. Sci. 97, 9 (2015)

    Article  Google Scholar 

  33. S. Srinivasan, K.R. Rajagopal, Int. J. Non-Linear Mech. 78, 112 (2016)

    Article  ADS  Google Scholar 

  34. B.R. Jaiswal, B.R. Gupta, Meccanica 52, 69 (2017)

    Article  MathSciNet  Google Scholar 

  35. E.I. Saad, Meccanica 47, 2055 (2012)

    Article  MathSciNet  Google Scholar 

  36. I.V. Chernyshev, Fluid Dyn. 35, 147 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  37. J. Happel, H. Brenner, Low Reynolds Number Hydrodynamics (Prentice-Hall Inc., UK, 1965) chapt. 4

  38. S.I. Vasin, A.N. Filippov, V.M. Starov, Adv. Coll. Interface Sci. 139, 83 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pramod Kumar Yadav.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, P.K. Motion through a non-homogeneous porous medium: Hydrodynamic permeability of a membrane composed of cylindrical particles. Eur. Phys. J. Plus 133, 1 (2018). https://doi.org/10.1140/epjp/i2018-11804-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2018-11804-8

Navigation